ORIE 5270: B1G DATA TECHNOLOGIES
HOMEWORK 4 — DUE: FRIDAY 04/30/2021

Instructions. Submit by Friday, April 30th at 11:59pm (midnight) US EDT).

Note: Problems 1 has to be submitted via your Cornell Github (detailed instructions are
available at the end of each problem). All the other problems should be submitted on
Gradescope. Problems 4 & 5 are optional; you do not have to submit them to get full
score on this homework, but they can be used to boost your score on other homeworks.

Problem 1. For this problem, you will create a Python project in a private Github repos-
itory (use Cornell’s Github website just like in HW1). More specifically:

e Pick a data structure or algorithm of your choice; you may choose to implement
anything that we have covered in class or homeworks, except for the stack data struc-
ture and the binary search algorithm. You may also choose a data structure or algo-
rithm that we haven'’t covered in class.

Please contact us on Campuswire if you are unsure about whether the data structure
or algorithm you chose is appropriate for this exercise.

* Create a private Github repository containing a Python module with your imple-
mentation. In particular, you should:

1. Follow the project structure for Python projects that was suggested during the
lectures on testing and documentation (see page 3 of the March 29th lecture
slides).

2. Include a collection of unit tests using the unittest library and following the
suggested naming conventions; i.e., running python -m unittest from the
base folder of your repository should automatically discover and run all your
unit tests.

3. Add documentation (docstrings) to all your Python classes and (public) func-
tions / methods.

4. Include an html/ subfolder in the docs/ section of your project, containing
the HTML output of your project’s documentation, using a tool like pdoc3 or
Sphinx (page 14 of the March 31st lecture slides contains an example using
pdoc3).

Unit tests: your unit tests should be meaningful, i.e., they should cover nontrivial or “dif-
ficult” inputs, corner cases, check that your code raises the correct types of exceptions
when applicable, etc. You should aim for having at least 5 or 6 unit tests.

1

https://pdoc3.github.io/pdoc/doc/pdoc/#command-line-interface

Documentation: your docstrings should follow an established style, such as the ones
mentioned in class (rEST, numpydoc, or Google style). If you are using a different style,
please provide a link to its specification.

To generate HTML output for your documentation using pdoc, you can just run:

$ pdoc --html --output_dir docs/build <your_package_name>

What to submit: for this problem, do not submit anything on Gradescope. Instead, make
sure your project is private on Github and add the instructor (vc333@cornell.edu) and
the TAs (asa97@cornell.edu and ssc255@cornell. edu) as collaborators using the web
interface.

Problem 2. Download the file stream_example.py and read through its code. This is a
multi-threaded implementation of a program that counts the number of odd elements in
a stream. Then, do the following:

* Identify any places where race conditions can happen. Add inline comments to
those places in the code, explaining why it creates a race condition.

* Add appropriate synchronization mechanisms (locks or semaphores) to prevent the
aforementioned race conditions.

What to submit: For this problem, submit your modified version of stream_example.py
(containing inline comments and appropriate synchronization) on Gradescope.

Problem 3. For this part, you will implement a distributed version of matrix-vector multi-
plication (the operation y = Ax, where A € R"**"), using the Python multiprocessing li-
brary. Download the file matvec . py and modify the code appropriately so that it achieves
the following:

» Each worker process should receive the input vector x and one or more rows of
the array A, and compute a portion of the final result y. This final result should
eventually be available in the master process.

Hint: use a shared array vy for storing the results.

* Your code should not introduce any race conditions; i.e., you should not have to use
any locks or semaphores for your program to run correctly.

Problem 4. Bonus (25%).

Implement the parallel version of mergesort we saw in the threading lecture, but now
using multiprocessing. Use the timeit module to investigate the effect of the number
of processes used to the runtime of the algorithm, by sorting the same array using 1,2,4, 8
and 16 available processes.

You can also use the parallel version of merge from the April 12™ lecture at the final step
of your algorithm to try and obtain an additional speed-up.

2

https://people.orie.cornell.edu/vc333/orie5270/assignments/_assets/stream_example.py
https://people.orie.cornell.edu/vc333/orie5270/assignments/_assets/matvec.py

Note: In the threading example, we could operate on the input array A directly since
threads have shared memory. With multiprocessing, the array A can still be passed as
an argument but each process needs to communicate the changes back to the master
process explicitly. You will have to use an appropriate shared memory construct for this.

Problem 5. Bonus (25%). An example application where parallelization can make a big
difference is that of Monte Carlo simulation. The objective is to simulate a process, whose
mean is known to be equal to a quantity of interest, by taking the sample mean of a set of
independent trials. The larger the number of trials, the more accurate our estimate will
be.

In this problem, you will write a Monte-Carlo simulation to estimate the value of the
mathematical constant 7. At a high-level, the algorithm works as follows:

1. Generate N random vectors z' € R?> which are sampled from the uniform distribu-
tion in the unit square, [—1,1] x [-1,1].

2. For each of those random numbers, output 1 if 4/ (z{)2 + (zé)2 <1, and 0 otherwise.

3. Let N; be the number of 1’s from the previous step; we output 7 = % as our esti-
mate of 7.

Why does this algorithm work? Observe that we only output 1 in the second step of the
algorithm if the sample z’ falls in the unit circle. In other words, the probability that we
increment our count N; is equal to the probability that z’ falls inside the unit circle. The
unit circle has volume 7r? = 7, while the unit square has volume 2 x 2 = 4. Therefore,
the probability that we output 1 is equal to %, so E[N7] = %, which is why we scale the
estimate by 4.

Use amultiprocessing.ProcessPool to implement the above algorithm in parallel. In
particular, you should:

* Set the number of processes managed by the ProcessPool equal to the number of
available cores in your system.

e Define a function trial(m) that performs m trials of the above algorithm; i.e.,
it generates m random samples z' uniformly distributed in the unit square, and
counts how many of them fall inside the unit circle.

» UseProcessPool.map to apply the trials in parallel and obtain alist of partial counts;
finally, divide the sum by the total number of runs N that you want to simulate.

Hint: ProcessPool.map(f, [z1, ..., zn]) returns [f(z1), ..., f(zn)], so
you will have to figure out what list to apply the function trial to.

Note: The total number of trials N can be hardcoded in your Python script, or passed
as an argument from the user. In any case, you may assume that N is a multiple of the
number of available cores in your system for simplicity.

