ORIE 5270: B1G DATA TECHNOLOGIES
HOMEWORK 3 — DUE: FRIDAY, 04/09/2021

Instructions. The deadline to submit is Friday, April 9th at 11:59pm (midnight) US
EST). Submit your answers on Gradescope. Please submit a single file per problem.

Note 1: You may submit a Jupyter notebook for Problem 1.

Note 2: Clarifications have been added in blue color for your convenience.

Problem 1 (Solving sparse linear systems). Suppose you have a set of measurements
Vi= a;rxﬁ, i=1,...,m,

where a; € R" are known design vectors and x; € R” is an unknown signal you want to
recover. In matrix-vector notation, this is equivalent to

-
a,
y=Ax;, A=

ay,

You are given than m <« n, which means that the system is underdetermined. Without any
assumptions, it is statistically impossible to recover x;, since there is an infinite number
of solutions. One assumption that enables unique recovery is that that x; is sparse; this
means that most of its elements are zero, i.e.,

[{i 1 (xp); #0}| = k < n.

An algorithm to recover x; is that of iterative hard thresholding, presented below. The
operation Py .(X;) sets all but k largest elements (in magnitude) of X; to zero.

The following examples demonstrate the behavior of 2% for different inputs and values of

10 10 -1 0
0 0 —2 -2
P gl [T |=8]" Z*||=3||7|-3
7 0 4 4

1. Implement Algorithm 1 in Python (using NumPy). The function signature should
be iht_solve(A, y, x_0, T, eta, k) and your function should return a single
vector (the output x7 of Algorithm 1). If you wish, you can follow the outline given
in the Assignments Page.

https://people.orie.cornell.edu/vc333/orie5270/assignments/_assets/hw3_p1.py

Algorithm 1 Iterative hard thresholding

Input: matrix A, measurements y, initial guess xy, iterations 7', step n > 0, sparsity k.
fort=1,...,Tdo

X=X —NAT (Axe_1 -)

Xp = Pr(Xy) > Projection to set of sparse vectors
end for
return xr

2. Try your algorithm on a few random instances with m = 100, n = 500, T = 500 and
varying sparsity level k € {Zh |h=0,1,..., 5}. You can use the function genInstance
from the Assignments Page to generate the instances; for example:

here, m = 100, n = 500, k = 10
y, A, x_true = genInstance(100, 500, 10)

Write a Python script that generates an error plot with k in the x-axis and the ap-
proximation error ||xr — x|, in the y-axis (use matplotlib for the plots).

The “trend” you should expect to observe is that larger values of k usually lead to
the same or larger approximation error.

Note: The choice of initialization, xy, as well as the step size eta, are up to you. For
example, you may pick xy to be the all-zeros vector or a random vector chosen uni-
formly on the unit sphere. The step size 11 should be small (at the order of 0.01 or
0.001), but you may have to try different values around that range until you get rea-
sonable results.

Note: Since k will increase exponentially in these experiments, you should use a log-
plot with base?2 for x axis: use thematplotl<b.pyplot.semilogz function for that
purpose.

Problem 2 (All-pairs distances). Suppose you are given a set of vectors xi,...,xy in R”
and you want to compute

dij= ||xi—xj||§, Vi, jell,...,N}.

Write a Python function all_pairs_dist(X) that accepts a NumPy array X € RV*" with
each row being a vector x; and computes a N x N matrix D with D;; = ||x,- - Xj ||§ Your
function cannot use loops, just Numpy operations and broadcasting.

Hint: use the fact that D;; = || x; — x; ||§ = llx; 15 + || x; ||§ - inij and NumPy broadcasting.

https://people.orie.cornell.edu/vc333/orie5270/assignments/_assets/hw3_p1.py

In particular, you can first try to express the following matrix:

xlTxl xlTxg xlTxN
T T T

Xy X1 Xy X2 ... X, XN
T T

| XyX1 e e XyXN

using a NumPy matrix-matrix multiplication, and then use NumPy broadcasting for ex-
pressing the matrix

I 2+ 02 .o 2+ 2
Il + 002 ...l + lxwli2
xen 2+ 102 ... Hxnl2 + a2]

as the sum of two NumPy arrays with appropriate shapes.

Problem 3 (Hashing and bloom filters). In class, we mentioned that constructing an ideal
hash function that maps from {0,...,m -1} to {0,..., k — 1} (i.e., a hash function & such that
h(i) is drawn uniformly at random from {0,...k —1}) is impossible. However, since we
usually only care about minimizing collision probabilities, we can build something called
a universal hash function using the Algorithm 2 below.

Algorithm 2 Universal hash function

Input: input universe size m, output universe size k

1. Pick a prime number p > m.

2. Draw an integer a € {1,..., p — 1} uniformly at random.
3. Draw an integer b € {0, ..., p — 1} uniformly at random.
return the function h(x) := ((ax+b) mod p) mod k.

Part I: Write a Python function genHash (m, k) thatimplements Algorithm 2. Your func-
tion should return a callable that is the function h(x) described in the algorithm. For
example, the output hash below should itself be a function that can be used to map ele-
ments from the input universe to {0,..., kK —1}.

>>> hash = genHash(100, 10)
>>> hash(97) # should return something in {0, 1, .., 9}.
>>> hash(97) # should return the same number

“Returning a callable” specifically means returning an object that can be stored and in-
voked as a function. Here is an example of defining such a callable:

>>> my_fun = lambda x: x + 1
>>> my_fun(1)
2

Note that my_fun can now be passed around as a variable, stored in an array, etc.

Note: You may use the next_prime() function, available from the assignments page.
Calling next_prime (x) will return the next prime strictly larger than x.

Part II: Use the function you wrote in Part I to implement a Bloom filter. Bloom filters
are efficient data structures for checking membership in a set. The cost of efficiency
is a (small) probability of false positives. Here, we assume that our input universe is
{0,..., m—1}. A Bloom filter works as follows:

Bloom filter

1. Initialize a k-dimensional bit array (i.e. with values in 0 or 1), with all elements
initially set to 0. Call this array A.

2. Generate p universal hash functions mapping from {0,...,m -1} to {0,..., k— 1}
using Algorithm 2. Call these functions hy,..., h).

3. Insertion: to “insert” some x € {0,..., m — 1} to the set, modify A as follows:

Alhi(0)]=1, Vi=1,...,p.

4. Lookup: to check if some y € {0,..., m — 1} belongs to the set, return:
e TRUEIf Alh;(y)] =1 foralli=1,...,p.

e FALSE otherwise.

Create a Python class called BloomFilter with a constructor that accepts the size of the
input universe m, the number of elements 7 to insert to the filter, the number of bits &k,
and the number of hash functions p. If the user omits p, you should choose

Hd
p=|—In2]|.
n
Note: n here is only used for determining the default number of hash functions p and is
not used anywhere else. If the user specifies p, then n’s value does not matter.
Your class should support the following instance methods:
e empty (): clear the Bloom filter by setting the bit array A to zero.
e insert(x): insert an element x into the filter. It should update the state of the filter

and return True if the element was added and False if it was already present.

4

https://people.orie.cornell.edu/vc333/orie5270/assignments/_assets/next_prime.py

e lookup(x): lookup an element x. It should return True if the element was found
and False otherwise.

Problem 4 (Streams). In this problem, you will implement a couple of algorithms operat-
ing on data streams.

1. Implement a Python function randomStream(m, n) that returns a generator con-
taining up to n random numbers from the set {0, ..., m — 1}. You will use this func-
tion later to emulate a stream; note that a generator takes up way less space than
e.g., calling np.random.randint, which would allocate the entire n-element list.

2. Write a Python function sample (stream, k) that implements the reservoir sam-
pling algorithm for choosing k elements at random from a stream. Your function
should use O(k) memory; you can assume that stream is a generator like the one
you implemented in Part (1).

3. Suppose we now want to (approximately) find the f most frequent elements of a
stream. An algorithm for doing that is the COUNTMINSKETCH algorithm, which
approximates the frequency of each distinct element seen in the stream. The algo-
rithm relies on the concept of a universal hash function from Problem 3 and oper-
ates as follows:

CountMinSketch

Below, we assume that the input “universe” is the set {0,..., m — 1}.

e Initialize: create a matrix C with ¢ rows and k columns, and generate ¢
universal hash functions hy,...,h;:{0,...,m—1} —{0,..., k—1}.

e Insert: if x is the new element of the stream, do the following:

Cli, h;(x)] < Cli, h;(x)] +1, for all rows i.

¢ Lookup: to find the approximate frequency of an element y € {0,...,m -1},
return
Cy:= 1m_in Cli, hi(y)]
<I<t

Write a Python function countMinSketch(stream, m, t, k, f)thatimplements
the above algorithm and uses it to find the f most frequent elements of an input
stream. You can assume that streamn is a Python generator like the one you wrote in
Part (1), and you may use the universal hash function implementation from Prob-
lem 3.

https://wiki.python.org/moin/Generators

