
ORIE 5270: BIG DATA TECHNOLOGIES

HOMEWORK 3 – DUE: FRIDAY, 04/09/2021

Instructions. The deadline to submit is Friday, April 9th at 11:59pm (midnight) US
EST). Submit your answers on Gradescope. Please submit a single file per problem.

Note 1: You may submit a Jupyter notebook for Problem 1.

Note 2: Clarifications have been added in blue color for your convenience.

Problem 1 (Solving sparse linear systems). Suppose you have a set of measurements

yi = aT
i x], i = 1, . . . ,m,

where ai ∈ Rn are known design vectors and x] ∈ Rn is an unknown signal you want to
recover. In matrix-vector notation, this is equivalent to

y = Ax], A =

aT
1
...

aT
m

 .

You are given than m ¿ n, which means that the system is underdetermined. Without any
assumptions, it is statistically impossible to recover x], since there is an infinite number
of solutions. One assumption that enables unique recovery is that that x] is sparse; this
means that most of its elements are zero, i.e.,∣∣{i | (x])i 6= 0

}∣∣= k ¿ n.

An algorithm to recover x] is that of iterative hard thresholding, presented below. The
operation Pk (x̃t) sets all but k largest elements (in magnitude) of x̃t to zero.

The following examples demonstrate the behavior of Pk for different inputs and values of
k:

P2

10
0

−8
7

=

10

0
−8

0

 , P3

−1
−2
−3

4

=

0

−2
−3

4

 .

1. Implement Algorithm 1 in Python (using NumPy). The function signature should
be iht_solve(A, y, x_0, T, eta, k) and your function should return a single
vector (the output xT of Algorithm 1). If you wish, you can follow the outline given
in the Assignments Page.

1

https://people.orie.cornell.edu/vc333/orie5270/assignments/_assets/hw3_p1.py

Algorithm 1 Iterative hard thresholding

Input: matrix A, measurements y , initial guess x0, iterations T , step η> 0, sparsity k.
for t = 1, . . . ,T do

x̃t := xt−1 −ηAT(Axt−1 − y)
xt :=Pk (x̃t) . Projection to set of sparse vectors

end for
return xT

2. Try your algorithm on a few random instances with m = 100,n = 500, T = 500 and
varying sparsity level k ∈ {

2h | h = 0,1, . . . ,5
}
. You can use the function genInstance

from the Assignments Page to generate the instances; for example:

here, m = 100, n = 500, k = 10
y, A, x_true = genInstance(100, 500, 10)

Write a Python script that generates an error plot with k in the x-axis and the ap-
proximation error

∥∥xT −x]
∥∥

2 in the y-axis (use matplotlib for the plots).

The “trend” you should expect to observe is that larger values of k usually lead to
the same or larger approximation error.

Note: The choice of initialization, x0, as well as the step size eta, are up to you. For
example, you may pick x0 to be the all-zeros vector or a random vector chosen uni-
formly on the unit sphere. The step size η should be small (at the order of 0.01 or
0.001), but you may have to try different values around that range until you get rea-
sonable results.

Note: Since k will increase exponentially in these experiments, you should use a log-
plot with base 2 for x axis: use the matplotlib.pyplot.semilogx function for that
purpose.

Problem 2 (All-pairs distances). Suppose you are given a set of vectors x1, . . . , xN in Rn

and you want to compute

di j =
∥∥xi −x j

∥∥2
2 , ∀i , j ∈ {1, . . . , N } .

Write a Python function all_pairs_dist(X) that accepts a NumPy array X ∈RN×n with
each row being a vector xi and computes a N ×N matrix D with Di j =

∥∥xi −x j
∥∥2

2. Your
function cannot use loops, just Numpy operations and broadcasting.

Hint: use the fact that Di j =
∥∥xi −x j

∥∥2
2 = ‖xi‖2

2 +
∥∥x j

∥∥2
2 −2xT

i x j and NumPy broadcasting.

2

https://people.orie.cornell.edu/vc333/orie5270/assignments/_assets/hw3_p1.py

In particular, you can first try to express the following matrix:
xT

1 x1 xT
1 x2 . . . xT

1 xN

xT
2 x1 xT

2 x2 . . . xT
2 xN

...
...

xT
N x1 xT

N xN

using a NumPy matrix-matrix multiplication, and then use NumPy broadcasting for ex-
pressing the matrix

‖x1‖2
2 +‖x1‖2

2 . . . ‖x1‖2
2 +‖xN‖2

2

‖x2‖2
2 +‖x1‖2

2 . . . ‖x2‖2
2 +‖xN‖2

2
...

...

‖xN‖2
2 +‖x1‖2

2 . . . ‖xN‖2
2 +‖xN‖2

2

as the sum of two NumPy arrays with appropriate shapes.

Problem 3 (Hashing and bloom filters). In class, we mentioned that constructing an ideal
hash function that maps from {0, . . . ,m −1} to {0, . . . ,k −1} (i.e., a hash function h such that
h(i) is drawn uniformly at random from {0, . . .k −1}) is impossible. However, since we
usually only care about minimizing collision probabilities, we can build something called
a universal hash function using the Algorithm 2 below.

Algorithm 2 Universal hash function

Input: input universe size m, output universe size k
1. Pick a prime number p > m.
2. Draw an integer a ∈ {

1, . . . , p −1
}

uniformly at random.
3. Draw an integer b ∈ {

0, . . . , p −1
}

uniformly at random.
return the function h(x) := (

(ax +b) mod p
)

mod k.

Part I: Write a Python function genHash(m, k) that implements Algorithm 2. Your func-
tion should return a callable that is the function h(x) described in the algorithm. For
example, the output hash below should itself be a function that can be used to map ele-
ments from the input universe to {0, . . . ,k −1}.

>>> hash = genHash(100, 10)
>>> hash(97) # should return something in {0, 1, .., 9}.
>>> hash(97) # should return the same number

“Returning a callable” specifically means returning an object that can be stored and in-
voked as a function. Here is an example of defining such a callable:

3

>>> my_fun = lambda x: x + 1
>>> my_fun(1)
2

Note that my_fun can now be passed around as a variable, stored in an array, etc.

Note: You may use the next_prime() function, available from the assignments page.
Calling next_prime(x) will return the next prime strictly larger than x.

Part II: Use the function you wrote in Part I to implement a Bloom filter. Bloom filters
are efficient data structures for checking membership in a set. The cost of efficiency
is a (small) probability of false positives. Here, we assume that our input universe is
{0, . . . ,m −1}. A Bloom filter works as follows:

Bloom filter

1. Initialize a k-dimensional bit array (i.e. with values in 0 or 1), with all elements
initially set to 0. Call this array A.

2. Generate p universal hash functions mapping from {0, . . . ,m −1} to {0, . . . ,k −1}
using Algorithm 2. Call these functions h1, . . . ,hp .

3. Insertion: to “insert” some x ∈ {0, . . . ,m −1} to the set, modify A as follows:

A[hi (x)] = 1, ∀i = 1, . . . , p.

4. Lookup: to check if some y ∈ {0, . . . ,m −1} belongs to the set, return:

• TRUE if A[hi (y)] = 1 for all i = 1, . . . , p.

• FALSE otherwise.

Create a Python class called BloomFilter with a constructor that accepts the size of the
input universe m, the number of elements n to insert to the filter, the number of bits k,
and the number of hash functions p. If the user omits p, you should choose

p =
⌈

k

n
ln2

⌉
.

Note: n here is only used for determining the default number of hash functions p and is
not used anywhere else. If the user specifies p, then n’s value does not matter.

Your class should support the following instance methods:

• empty(): clear the Bloom filter by setting the bit array A to zero.

• insert(x): insert an element x into the filter. It should update the state of the filter
and return True if the element was added and False if it was already present.

4

https://people.orie.cornell.edu/vc333/orie5270/assignments/_assets/next_prime.py

• lookup(x): lookup an element x. It should return True if the element was found
and False otherwise.

Problem 4 (Streams). In this problem, you will implement a couple of algorithms operat-
ing on data streams.

1. Implement a Python function randomStream(m, n) that returns a generator con-
taining up to n random numbers from the set {0, . . . ,m −1}. You will use this func-
tion later to emulate a stream; note that a generator takes up way less space than
e.g., calling np.random.randint, which would allocate the entire n-element list.

2. Write a Python function sample(stream, k) that implements the reservoir sam-
pling algorithm for choosing k elements at random from a stream. Your function
should use O(k) memory; you can assume that stream is a generator like the one
you implemented in Part (1).

3. Suppose we now want to (approximately) find the f most frequent elements of a
stream. An algorithm for doing that is the COUNTMINSKETCH algorithm, which
approximates the frequency of each distinct element seen in the stream. The algo-
rithm relies on the concept of a universal hash function from Problem 3 and oper-
ates as follows:

CountMinSketch

Below, we assume that the input “universe” is the set {0, . . . ,m −1}.

• Initialize: create a matrix C with t rows and k columns, and generate t
universal hash functions h1, . . . ,ht : {0, . . . ,m −1} → {0, . . . ,k −1}.

• Insert: if x is the new element of the stream, do the following:

C [i ,hi (x)] ←C [i ,hi (x)]+1, for all rows i .

• Lookup: to find the approximate frequency of an element y ∈ {0, . . . ,m −1},
return

ĉy := min
1≤i≤t

C [i ,hi (y)]

Write a Python function countMinSketch(stream, m, t, k, f) that implements
the above algorithm and uses it to find the f most frequent elements of an input
stream. You can assume that stream is a Python generator like the one you wrote in
Part (1), and you may use the universal hash function implementation from Prob-
lem 3.

5

https://wiki.python.org/moin/Generators

