ORIE 5270: B1G DATA TECHNOLOGIES
HOMEWORK 2 — DUE: MONDAY, 03/22/2021

Instructions. The deadline to submit is Monday, March 22nd at 12pm (noon) US EST).
Submit your answers on Gradescope. Please submit a .zip archive containing a single
file per problem, with the exception of Problem 6.

Note: Problem 6 asks you to build your personal website, and contains separate submis-
sion instructions. It is due on the last lecture of the semester.

Problem 1 (Complexity classes). In this problem, you are given a set of functions f;(n).
Sort these functions in ascending order according to their complexity class, as indicated
by O(-) notation; in particular, if f; appears before f; in your answer, it should satisfy

fi(n) = O(f;(m).

Note: there is only one correct ordering for the set of functions given below. For some of
these comparisons, you might find Stirling’s formula useful.

AW =n*+n+7, fo(n)=logny),  fs(n)=n'", f1(n) =10g' " (n),
fo(my =2""2, foln) =log(n'®),  fr(n)=2""%", " fy(n) = oy,
fom =1, fiom) =nt+27", fi1(n) =10%.

What to submit: submit a single . txt file that contains a comma-separated list of indices
i corresponding to the f;’s placed in ascending order. For example, if the first 3 functions
in your answer are f7, fo and f>, your file should start like this: 7, 9, 2,

Problem 2 (Power). A standard operation in programming languages is computing the
power of an element, x”. In this problem, you will implement an algorithm in Python to
efficiently compute powers when p is an integer.

1. Write a Python function pow(x, n) that implements the operation x". Assuming
multiplication between two numbers takes time O(1), your algorithm should run in
time O(log, (n)). You should not use Python's built-in ** operator for this.

2. Generalize your power function so that it computes powers of matrices, A", when-
ever A is symmetric, by writing a Python function matrix_pow(A, n).

You will likely find the following fact useful: if A is symmetric, there exists a matrix
Q € R?*¥ a5 well as a diagonal matrix A such that

A=QAQ",and QTQ=QQ" = I,.

You can use the numpy.linalg.eigh function from NumPy to obtain the above
decomposition.



Problem 3 (Merging sorted lists). Consider the following setup: you are given K lists
sorted in ascending order, such that the total number of elements (i.e. summed over all
K lists) is n. You wish to merge these K lists into a single, n-element sorted list.

1. Write a function called simple_merge that accepts a collection of sorted lists (e.g. a
list of lists) and returns a sorted list containing all their elements in time O(K - n).

2. Write another function called merge that accepts a collection of sorted lists and
merges them in time O(nlogK).

Hint: you can either (i) use an appropriate data structure for choosing the next ele-

ment to insert to the final list, or (ii) design a divide-and-conquer style algorithm.
Problem 4 (Iterative quicksort). In this problem, you will implement an iterative version
of quicksort and compare it with Python’s built-in sorting algorithm.

1. Implement a non-recursive version of quicksort, called quicksort_iter(A). In
particular, you should use a stack to keep track of the start and end indices, p,r,
of the subarray you are currently partitioning.

Feel free to use the code for the partition subroutine available in the lecture slides.

2. Generate a few random integer arrays of size 10%,10%,...,10° and compare the time
elapsed by the algorithm you wrote in Part 1 with Python’s built-in sorted () func-
tion. Is there a clear winner? You can use the timeit module to measure the run-
time, and numpy . random. randint to generate random integer arrays. Make sure to
allow large enough integer values for the elements of the array (comparable to the
size of the array).

The code you submit for this part should include the function and timeit state-
ments you wrote to test the performance. You can include the results you got for
each array size as comments in the source code.
Problem 5 (Word Count). Write a bash script that accepts a single argument containing
the path to a file and generates a file containing two columns: the first column contains
all the distinct words encountered in the original file, while the second column contains
the number of appearances of each word.

You may assume the following:

 The file will only contain letters (uppercase and lowercase) and the following 4 punc-
tuation symbols: 7, , (comma), . (dot), and !. In addition, every pair of words in the
input file is guaranteed to be separated by a space and/or punctuation symbol.

* You don’t need to worry about words sharing a common stem, e.g. plurals. For
example, the words computer and computers should be treated as distinct words.

* Your output should be case-insensitive. This means that if the input file contains
the words computer and Computer, you should treat them as appearances of the
same word (computer) and count them both.


https://docs.python.org/3/library/timeit.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html

Hint 1: you will likely need the tr command that translates characters.

Hint 2: make use of the pipe construct to compose operations.

Problem 6 (Personal website). If you don’t have a personal website, now might be the time
to build one! Many repository hosting services, such as Github and Gitlab, allow you to
build static websites (meaning: HTML + CSS + Javascript, but no backend components).

How it works: you create a repository named like <username>.github.io which con-
tains the source for your website. Then, a static site generator specified by a configuration
file that you include in your repository builds your website from the source files you in-
cluded. The website is then made available under the same URL as the name of your
project.

Because the process varies depending on the hosting service as well as the site generator
of your choice, you can take your time to browse and familiarize yourself with the ser-
vice and the static website generator of your choice. Here are some links to help you get
started.

1. Static website generators:
e Jekyll: https://jekyllrb.com/
e Hugo: https://gohugo.io/
e Hakyll: https://jaspervdj.be/hakyll/
2. Links to static website hosting services:
 Github pages: https://pages.github.com/
e Gitlab pages: https://docs.gitlab.com/ee/user/project/pages/

What to turn in: by the last lecture of the semester, you should build at least a minimal
website (e.g. Home / About Me / Projects / Misc) with some meaningful content. For
example, you should add your bio and academic interest and a showcase of projects you
have done in the past or are currently undertaking. Then, you should send me an email
with subject line [ORIE 5270] - Personal Website containing the following:

* if you make your website public, your email should contain a link to your website.

¢ if you would rather not make your website publicly available at the time, your email
should contain a .zip file with your website’s source code, as well as instructions
on how to “build” it locally.


https://jekyllrb.com/
https://gohugo.io/
https://jaspervdj.be/hakyll/
https://pages.github.com/
https://docs.gitlab.com/ee/user/project/pages/

