
ORIE 5270: Big Data Technologies
Homework 0

Instructor: Vasileios Charisopoulos - vc333@cornell.edu

Instructions: This assignment is optional and meant to familiarize you with Python.
Nevertheless, if you submit we will substitute your lowest graded homework with this
one (as long as that improves your grade).

The deadline to submit is Friday, February 19th at 12pm (noon) US EST.
Submit your answers on Gradescope. You should submit a single file per problem.1

Problem 1 (Binary search). One of the fundamental algorithms in computer science
is that of binary search. In binary search, we are given a sorted array A as well as
an element x (that may or may not be part of the array), and wish to find the index
of the largest element y ∈ A such that y ≤ x.

Write a Python function binary search(A, x) that implements this algorithm.

(Note: Python already provies a module called bisect that implements binary search,
that you would use if you were writing production code.)

Problem 2 (Palindromes). We call an integer x ∈ Z a palindrome if it represents
the same value when read from left to right as when it is read from right to left. For
example, 121 and 1221 are palindromes, while 122 is not.

(i) Write a Python function palindrome(x) that accepts an integer x and returns
True if it is a palindrome and False if not.

(ii) If the value of the argument x passed to your function is not an integer, raise an
appropriate exception (ValueError) instead.

(Hint: look for the isinstance function.)

Problem 3 (Gradient descent). Gradient descent is one of the oldest algorithms in
optimization for solving

min
x∈Rn

f(x), where f is differentiable.

It works as follows: starting from some initial point x0 ∈ Rn, it repeats the following

1See https://bit.ly/3oY8s3g for help with submitting a programming assignment.

1

mailto:vc333@cornell.edu
https://bit.ly/3oY8s3g


step:
xk+1 := xk − ηk∇f(xk), k ≥ 0, (1)

where ηk is the so-called step size and ∇f(xk) is the gradient of f evaluated at xk.

(i) Write a Python function that implements gradient descent for T steps starting
from a given point x0, given callables f and gradf (which return the value of the
function and its gradient, respectively) as well as a constant step size η. Your
declaration should look like below:

def gradient_descent(f, gradf, eta, x_0, T):

"""

Documentation

"""

(ii) In the above, you (most likely) treated eta as a number, since the step size was
assumed to be a constant. Update your code so that it can accomodate time-
varying step sizes. You may assume that the step size may only depend on the
iteration index – for example, these are all valid choices:

ηk ≡ η = 0.1, or ηk =
1√
k
, or ηk = 2−k.

Problem 4 (Solving a linear system). Linear systems are systems of equations of the
form

Ax = b, A ∈ Rm×n, b ∈ Rm.

If the number of equations is larger than the number of unknowns, there is a unique
solution (if m > n, it is possible there is no solution entirely). If m < n (the system
is underdetermined) the number of possible solutions is infinite, and it is common to
look for the minimum norm solution, given by

x] := AT(AAT)−1b.

(i) Write a Python function (using the numpy library) that, given A and b, returns
the solution to the system Ax = b; if the system is underdetermined, your func-
tion should return the minimum norm solution. The solution should be a single
NumPy array object, and you can assume that A and b will also be given as
NumPy matrices.

(ii) If m > n and the system Ax = b has no solutions, raise an appropriate exception
instead of returning a value.

Problem 5 (Classes). Implement (in Python) a class called VectorND that represents
a real-valued vector of the form [x1, . . . , xN ]. In particular, the dimension N should
not be fixed, but your class should allow it to be determined when constructing an
instance. For example, both of the following should construct two VectorND instances:

2



>>> vec1 = VectorND(1, 2, 3, 4)

>>> vec2 = VectorND(1, 2, 3)

Your class should support the following operations (by implementing the appropriate
class methods):

• addition: given two VectorND instances x and y, writing x + y should return a
VectorND object with elements [x1 + y1, . . . , xN + yN ]. If the vector lengths are
different, it should raise an appropriate exception.

• subtraction: as above, but with x - y.

• iteration: the VectorND object should be iterable:

>>> vec = VectorND(1, 2, 3, 4)

>>> for i in vec: print(i)

1

2

3

4

Hint : look up yield and the iter method.

In addition, it should provide a printable representation of the object, as below:

>>> vec = VectorND(1, 2, 3, 4)

>>> vec

Vector: [1, 2, 3, 4]

3


