A superlinearly convergent subgradient method for sharp semismooth problems

Vasilis Charisopoulos

Joint work with Damek Davis

International Conference on Continuous Optimization, 2022

Goal: fast first-order algorithms for

 $\label{eq:generalized_states} \mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x) \quad \text{where} \quad \min f = 0,$

¹Hoffman '52.

²J.S. Pang '93; loffe '80s.

Goal: fast first-order algorithms for

 $\operatorname*{argmin}_{x\in\mathbb{R}^d}f(x)\quad\text{where}\quad\min f=0,$

under the following assumptions:

- f nonsmooth, locally Lipschitz.
- f satisfies classical **sharp growth** condition:

 $f(x) \ge \mu \operatorname{dist}(x, \mathcal{X}_*), \qquad \mathcal{X}_* = \operatorname{argmin} f.$

¹Hoffman '52.

²J.S. Pang '93; loffe '80s.

Goal: fast first-order algorithms for

 $\operatorname*{argmin}_{x\in \mathbb{R}^d} f(x) \quad \text{where} \quad \min f = 0,$

under the following assumptions:

- f nonsmooth, locally Lipschitz.
- f satisfies classical **sharp growth** condition:

$$f(x) \ge \mu \operatorname{dist}(x, \mathcal{X}_*), \qquad \mathcal{X}_* = \operatorname{argmin} f.$$

Classical example: Hoffman bound for LPs / linear inequalities.¹

 $dist(x, \{x \mid Ax \le b\}) \le H_A ||(Ax - b)_+||$

¹Hoffman '52.

²J.S. Pang '93; loffe '80s.

Goal: fast first-order algorithms for

 $\label{eq:generalized_states} \mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x) \quad \text{where} \quad \min f = 0,$

under the following assumptions:

- f nonsmooth, locally Lipschitz.
- f satisfies classical **sharp growth** condition:

$$f(x) \ge \mu \operatorname{dist}(x, \mathcal{X}_*), \qquad \mathcal{X}_* = \operatorname{argmin} f.$$

Root-finding problems:

find x s.t.
$$F(x) = 0 \Leftrightarrow \underset{x}{\operatorname{argmin}} \|F(x)\|$$
.

¹Hoffman '52.

²J.S. Pang '93; loffe '80s.

Goal: fast first-order algorithms for

 $\operatorname*{argmin}_{x\in\mathbb{R}^d}f(x)\quad\text{where}\quad\min f=0,$

under the following assumptions:

- f nonsmooth, locally Lipschitz.
- f satisfies classical **sharp growth** condition:

$$f(x) \ge \mu \operatorname{dist}(x, \mathcal{X}_*), \qquad \mathcal{X}_* = \operatorname{argmin} f.$$

Root-finding problems:

find x s.t.
$$F(x) = 0 \Leftrightarrow \underset{x}{\operatorname{argmin}} \|F(x)\|$$
.

Growth condition known as metric subregularity:²

 $||F(x)|| \ge \mu \operatorname{dist}(x, \mathcal{X}_*).$

¹Hoffman '52.

²J.S. Pang '93; loffe '80s.

Goal: fast first-order algorithms for

 $\operatorname*{argmin}_{x\in \mathbb{R}^d} f(x) \quad \text{where} \quad \min f = 0,$

under the following assumptions:

- f nonsmooth, locally Lipschitz.
- f satisfies classical **sharp growth** condition:

 $f(x) \ge \mu \operatorname{dist}(x, \mathcal{X}_*), \qquad \mathcal{X}_* = \operatorname{argmin} f.$

Set intersection problems: given $\mathcal{X}_1, \mathcal{X}_2$ closed,

find $\bar{x} \in \mathcal{X}_1 \cap \mathcal{X}_2 \Leftrightarrow \operatorname*{argmin}_x \left\{ \operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \right\}.$

¹Hoffman '52.

²J.S. Pang '93; loffe '80s.

Goal: fast first-order algorithms for

 $\operatorname*{argmin}_{x\in \mathbb{R}^d} f(x) \quad \text{where} \quad \min f = 0,$

under the following assumptions:

- f nonsmooth, locally Lipschitz.
- f satisfies classical **sharp growth** condition:

 $f(x) \ge \mu \operatorname{dist}(x, \mathcal{X}_*), \qquad \mathcal{X}_* = \operatorname{argmin} f.$

Set intersection problems: given $\mathcal{X}_1, \mathcal{X}_2$ closed,

find $\bar{x} \in \mathcal{X}_1 \cap \mathcal{X}_2 \Leftrightarrow \operatorname*{argmin}_x \left\{ \operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \right\}.$

Growth condition known as *linear regularity*:

 $\operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \ge \mu \operatorname{dist}(x, \mathcal{X}_1 \cap \mathcal{X}_2).$

¹Hoffman '52.

²J.S. Pang '93; loffe '80s.

Goal: fast first-order algorithms for

 $\label{eq:generalized_states} \mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x) \quad \text{where} \quad \min f = 0,$

under the following assumptions:

- f nonsmooth, locally Lipschitz.
- f satisfies classical **sharp growth** condition:

$$f(x) \ge \mu \operatorname{dist}(x, \mathcal{X}_*), \qquad \mathcal{X}_* = \operatorname{argmin} f.$$

Fast algorithms?

¹Hoffman '52.

²J.S. Pang '93; loffe '80s.

Subgradient method:

$$x_{k+1} := x_k - \alpha_k \frac{v_k}{\|v_k\|}, \quad v_k \in \underbrace{\partial f(x_k)}_{\text{Clarke subdifferential}}.$$

¹Polyak '69. ²Davis et al. '18.

Subgradient method:

$$x_{k+1} := x_k - \alpha_k \frac{v_k}{\|v_k\|}, \quad v_k \in \underbrace{\partial f(x_k)}_{\text{Clarke subdifferential}}.$$

Theorem: $\{x_k\}$ converge *linearly* with *Polyak step size*:

$$\alpha_k = \frac{f(x_k)}{\|v_k\|}.$$

¹Polyak '69. ²Davis et al. '18.

Subgradient method:

$$x_{k+1} := x_k - \alpha_k \frac{v_k}{\|v_k\|}, \quad v_k \in \underbrace{\partial f(x_k)}_{\mathsf{Clarke subdifferential}}.$$

Theorem: $\{x_k\}$ converge *linearly* with *Polyak step size*:

$$\alpha_k = \frac{f(x_k)}{\|v_k\|}.$$

- Classically known for convex functions¹.
- Recently generalized for *weakly convex* functions².

Key example : $f = (convex) \circ (smooth)$.

¹Polyak '69.

²Davis et al. '18.

Subgradient method:

$$x_{k+1} := x_k - \alpha_k \frac{v_k}{\|v_k\|}, \quad v_k \in \underbrace{\partial f(x_k)}_{\text{Clarke subdifferential}}.$$

Theorem: $\{x_k\}$ converge *linearly* with *Polyak step size*:

$$\alpha_k = \frac{f(x_k)}{\|v_k\|}.$$

- Classically known for convex functions¹.
- Recently generalized for *weakly convex* functions².

Key example : $f = (convex) \circ (smooth)$.

Question: Faster than linear convergence using only subgradients?

¹Polyak '69.

²Davis et al. '18.

An answer in pictures

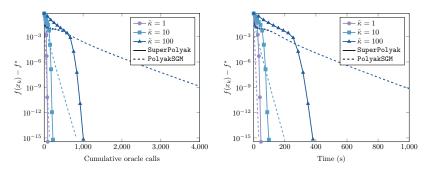


Figure: Our algorithm (SuperPolyak) applied to a matrix sensing problem with dimensions $(d,r) = (2^{15},2)$ and $m = 2^{19}$ measurements. Here, $\tilde{\kappa}$ is the condition number of the unknown matrix.

Algorithm converges superlinearly, with fewer subgradient oracle calls. How?

Simplifying assumption: problem has *unique solution* \bar{x} .

Simplifying assumption: problem has *unique solution* \bar{x} .

Polyak step equivalent to:

$$x_{k+1} := \operatorname*{argmin}_{x} \{ \|x - x_k\|^2 \mid f(x_k) + \langle v_k, x - x_k \rangle \le 0 \}, \ v_k \in \partial f(x_k).$$

Simplifying assumption: problem has *unique solution* \bar{x} .

Polyak step equivalent to:

$$x_{k+1} := \operatorname*{argmin}_{x} \{ \|x - x_k\|^2 \mid f(x_k) + \langle v_k, x - x_k \rangle \le 0 \}, \ v_k \in \partial f(x_k).$$

To improve convergence, can try to use a **bundle** $(y_i, v_i \in \partial f(y_i))$:

$$x_{k+1} := \operatorname*{argmin}_{x} \left\{ \|x - x_k\|^2 \mid f(y_i) + \langle v_i, x - y_i \rangle \le 0, \text{ for all } i \right\}.$$

- **Note**: \bar{x} always feasible when f is convex.
- Bundle points y_i chosen among the past k iterates.
- Each step requires solving a QP.

Simplifying assumption: problem has *unique solution* \bar{x} .

Polyak step equivalent to:

$$x_{k+1} := \underset{x}{\operatorname{argmin}} \{ \|x - x_k\|^2 \mid f(x_k) + \langle v_k, x - x_k \rangle \le 0 \}, \ v_k \in \partial f(x_k).$$

To improve convergence, can try to use a **bundle** $(y_i, v_i \in \partial f(y_i))$:

$$x_{k+1} := \operatorname*{argmin}_{x} \left\{ \|x - x_k\|^2 \mid f(y_i) + \langle v_i, x - y_i \rangle \le 0, \text{ for all } i \right\}.$$

- **Note**: \bar{x} always feasible when f is convex.
- Bundle points y_i chosen among the past k iterates.
- Each step requires solving a QP.

Guarantees?

- Good practical performance, but rate similar to subgradient method.³

³Polyak 87'.

Main idea.

• Replace QP by a linear system:

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \|x - x_k\|^2 \mid f(y_i) + \langle v_i, x - y_i \rangle = 0, \text{ for all } i \right\},$$

¹Bolte, Daniilidis & Lewis '09.

Main idea.

• Replace QP by a linear system:

$$x_{k+1} = \operatorname*{argmin}_{x} \{ \|x - x_k\|^2 \mid f(y_i) + \langle v_i, x - y_i \rangle = 0, \text{ for all } i \},$$

• Choose bundle points y_i "carefully".

¹Bolte, Daniilidis & Lewis '09.

Main idea.

• Replace QP by a linear system:

$$x_{k+1} = \operatorname*{argmin}_{x} \left\{ \|x - x_k\|^2 \mid f(y_i) + \langle v_i, x - y_i \rangle = 0, \text{ for all } i \right\},\$$

• Choose bundle points y_i "carefully".

Problem admits closed-form solution:

$$x_{k+1} = x_k - A^{\dagger} \begin{bmatrix} f(y_0) + \langle v_0, x_k - y_0 \rangle \\ \vdots \\ f(y_i) + \langle v_i, x_k - y_i \rangle \end{bmatrix}, \quad \text{where } A = \begin{bmatrix} v_0^{\mathsf{T}} \\ \vdots \\ v_i^{\mathsf{T}} \end{bmatrix}.$$

¹Bolte, Daniilidis & Lewis '09.

Main idea.

• Replace QP by a linear system:

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \|x - x_k\|^2 \mid f(y_i) + \langle v_i, x - y_i \rangle = 0, \text{ for all } i \right\},$$

• Choose bundle points y_i "carefully".

Key additional assumption: Semismoothness.

$$f(x) + \langle v, \bar{x} - x \rangle = o(\|x - \bar{x}\|), \quad \text{for } v \in \partial f(x) \text{ and as } x \to \bar{x}.$$

 \Rightarrow Implies \bar{x} is *nearly feasible* for system of equations!

¹Bolte, Daniilidis & Lewis '09.

Main idea.

• Replace QP by a linear system:

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \|x - x_k\|^2 \mid f(y_i) + \langle v_i, x - y_i \rangle = 0, \text{ for all } i \right\},$$

• Choose bundle points y_i "carefully".

Key additional assumption: Semismoothness.

$$f(x) + \langle v, \bar{x} - x \rangle = o(\|x - \bar{x}\|), \quad \text{for } v \in \partial f(x) \text{ and as } x \to \bar{x}.$$

 \Rightarrow Implies \bar{x} is *nearly feasible* for system of equations!

Semismoothness is common. Satisfied by:

- Convex and smooth, and $(convex) \circ (smooth)$ functions.
- Any semialgebraic function.¹

¹Bolte, Daniilidis & Lewis '09.

Main idea.

• Replace QP by a linear system:

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \|x - x_k\|^2 \mid f(y_i) + \langle v_i, x - y_i \rangle = 0, \text{ for all } i \right\},$$

• Choose bundle points y_i "carefully".

Key additional assumption: Semismoothness.

$$f(x) + \langle v, \bar{x} - x \rangle = o(\|x - \bar{x}\|), \quad \text{for } v \in \partial f(x) \text{ and as } x \to \bar{x}.$$

 \Rightarrow Implies \bar{x} is *nearly feasible* for system of equations!

Question: How to choose the bundle points $\{y_i\}$?

¹Bolte, Daniilidis & Lewis '09.

$$y_{0} := x; v_{0} \in \partial f(y_{0}); A_{1} = [v_{0}^{1}].$$

for $i = 1, ..., d$ do
$$y_{i} := y_{0} - A_{i}^{\dagger} [f(y_{j}) + \langle v_{j}, y_{0} - y_{j} \rangle]_{j=0}^{i-1}; \quad A_{i+1} := \begin{bmatrix} A_{i} \\ v_{i}^{\mathsf{T}} \end{bmatrix} \text{ for } v_{i} \in \partial f(y_{i})$$

$$\begin{split} y_0 &:= x; \, v_0 \in \partial f(y_0); \, A_1 = [v_0^{\mathsf{T}}].\\ \text{for } i &= 1, \dots, d \text{ do} \\ y_i &:= y_0 - A_i^{\dagger} \left[f(y_j) + \langle v_j, y_0 - y_j \rangle \right]_{j=0}^{i-1}; \quad A_{i+1} := \begin{bmatrix} A_i \\ v_i^{\mathsf{T}} \end{bmatrix} \text{ for } v_i \in \partial f(y_i) \\ \text{return } y_s, \text{ where } s &= \operatorname{argmin}_{i:\|y_i - y_0\| \le \tau f(y_0)} f(y_i) \end{split}$$

$$\begin{split} y_0 &:= x; \, v_0 \in \partial f(y_0); \, A_1 = [v_0^{\mathsf{T}}].\\ \text{for } i &= 1, \dots, d \text{ do} \\ y_i &:= y_0 - A_i^{\dagger} \left[f(y_j) + \langle v_j, y_0 - y_j \rangle \right]_{j=0}^{i-1}; \quad A_{i+1} := \begin{bmatrix} A_i \\ v_i^{\mathsf{T}} \end{bmatrix} \text{ for } v_i \in \partial f(y_i) \\ \text{return } y_s, \text{ where } s &= \operatorname{argmin}_{i: \|y_i - y_0\| \le \tau f(y_0)} f(y_i) \end{split}$$

Note: first bundle point recovers Polyak subgradient step:

$$y_1 = y_0 - (v_0^{\mathsf{T}})^{\dagger} (f(y_0) + \langle v_0, y_0 - y_0 \rangle) = y_0 - \frac{f(y_0)}{\|v_0\|^2} v_0.$$

$$\begin{split} y_0 &:= x; \, v_0 \in \partial f(y_0); \, A_1 = [v_0^{\mathsf{T}}].\\ \text{for } i &= 1, \dots, d \text{ do} \\ y_i &:= y_0 - A_i^{\dagger} \left[f(y_j) + \langle v_j, y_0 - y_j \rangle \right]_{j=0}^{i-1}; \quad A_{i+1} := \begin{bmatrix} A_i \\ v_i^{\mathsf{T}} \end{bmatrix} \text{ for } v_i \in \partial f(y_i) \\ \text{return } y_s, \text{ where } s &= \operatorname{argmin}_{i: \|y_i - y_0\| \le \tau f(y_0)} f(y_i) \end{split}$$

Strategy. Sharpness and semismoothness lead to "lemma of alternatives": 1. Suppose that y_0, \ldots, y_{j-1} have not improved superlinearly.

$$\begin{split} y_{0} &:= x; \, v_{0} \in \partial f(y_{0}); \, A_{1} = [v_{0}^{\mathsf{T}}].\\ \text{for } i &= 1, \dots, d \text{ do} \\ y_{i} &:= y_{0} - A_{i}^{\dagger} \left[f(y_{j}) + \langle v_{j}, y_{0} - y_{j} \rangle \right]_{j=0}^{i-1}; \quad A_{i+1} := \begin{bmatrix} A_{i} \\ v_{i}^{\mathsf{T}} \end{bmatrix} \text{ for } v_{i} \in \partial f(y_{i}) \\ \text{return } y_{s}, \text{ where } s = \operatorname{argmin}_{i: \|y_{i} - y_{0}\| \leq \tau f(y_{0})} f(y_{i}) \end{split}$$

Strategy. Sharpness and semismoothness lead to "lemma of alternatives":

- 1. Suppose that y_0, \ldots, y_{j-1} have not improved superlinearly.
- 2. Then, either one of the following must hold:
 - y_j improves superlinearly upon x;
 - $\square \operatorname{rank}(A_j) = j + 1.$

$$\begin{split} y_{0} &:= x; \, v_{0} \in \partial f(y_{0}); \, A_{1} = [v_{0}^{\mathsf{T}}].\\ \text{for } i &= 1, \dots, d \text{ do} \\ y_{i} &:= y_{0} - A_{i}^{\dagger} \left[f(y_{j}) + \langle v_{j}, y_{0} - y_{j} \rangle \right]_{j=0}^{i-1}; \quad A_{i+1} := \begin{bmatrix} A_{i} \\ v_{i}^{\mathsf{T}} \end{bmatrix} \text{ for } v_{i} \in \partial f(y_{i}) \\ \text{return } y_{s}, \text{ where } s = \operatorname{argmin}_{i: \|y_{i} - y_{0}\| \leq \tau f(y_{0})} f(y_{i}) \end{split}$$

Strategy. Sharpness and semismoothness lead to "lemma of alternatives":

- 1. Suppose that y_0, \ldots, y_{j-1} have not improved superlinearly.
- 2. Then, either one of the following must hold:
 - y_j improves superlinearly upon x;
 - $\blacksquare \operatorname{rank}(A_j) = j + 1.$
- 3. Since $A_j \in \mathbb{R}^{(j+1) \times d}$, superlinear improvement achieved within d steps.

$$\begin{split} y_{0} &:= x; \, v_{0} \in \partial f(y_{0}); \, A_{1} = [v_{0}^{\mathsf{T}}].\\ \text{for } i &= 1, \dots, d \text{ do} \\ y_{i} &:= y_{0} - A_{i}^{\dagger} \left[f(y_{j}) + \langle v_{j}, y_{0} - y_{j} \rangle \right]_{j=0}^{i-1}; \quad A_{i+1} := \begin{bmatrix} A_{i} \\ v_{i}^{\mathsf{T}} \end{bmatrix} \text{ for } v_{i} \in \partial f(y_{i}) \\ \text{return } y_{s}, \text{ where } s = \operatorname{argmin}_{i: \|y_{i} - y_{0}\| \leq \tau f(y_{0})} f(y_{i}) \end{split}$$

Theorem: C. & Davis, 2022 (informal)

Assume x near \bar{x} and τ is sufficiently large. Then

 $f(\text{PolyakBundle}(x, \tau)) = o(f(x)).$

✓ Provable early termination strategies available.

✓ Sequence of linear systems solved incrementally (QR-based algorithm).

$$\begin{split} y_{0} &:= x; \, v_{0} \in \partial f(y_{0}); \, A_{1} = [v_{0}^{\mathsf{T}}].\\ \text{for } i &= 1, \dots, d \text{ do} \\ y_{i} &:= y_{0} - A_{i}^{\dagger} \left[f(y_{j}) + \langle v_{j}, y_{0} - y_{j} \rangle \right]_{j=0}^{i-1}; \quad A_{i+1} := \begin{bmatrix} A_{i} \\ v_{i}^{\mathsf{T}} \end{bmatrix} \text{ for } v_{i} \in \partial f(y_{i}) \\ \text{return } y_{s}, \text{ where } s = \operatorname{argmin}_{i:\|y_{i} - y_{0}\| \leq \tau f(y_{0})} f(y_{i}) \end{split}$$

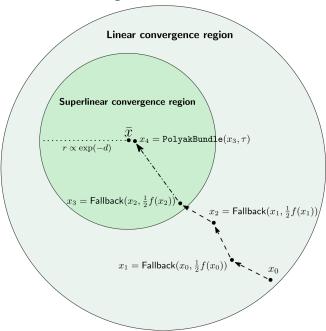
Theorem: C. & Davis, 2022 (informal)

Assume x near \bar{x} and τ is sufficiently large. Then

 $f(\text{PolyakBundle}(x, \tau)) = o(f(x)).$

- ✓ Provable early termination strategies available.
- ✓ Sequence of linear systems solved incrementally (QR-based algorithm).
- **X** Issue: region of local convergence $\propto \exp(-d)$.
 - Fix: couple with linearly convergent method (e.g., subgradient).

High-level overview



Algorithm: SuperPolyak

Input: $x_0 \in \mathbb{R}^d$. Repeat for $k = 0, 1, \dots$

Algorithm: SuperPolyak

Input: $x_0 \in \mathbb{R}^d$.

Repeat for $k = 0, 1, \ldots$

Attempt a superlinear step:

 $\tilde{x} = \texttt{PolyakBundle}(x_k, (3/2)^k)$

Algorithm: SuperPolyak

Input: $x_0 \in \mathbb{R}^d$.

Repeat for $k = 0, 1, \ldots$

Attempt a superlinear step:

$$\tilde{x} = \texttt{PolyakBundle}(x_k, (3/2)^k)$$

If \tilde{x} available and sufficient decrease:

$$f(\tilde{x}) \leq \frac{1}{2}f(x_k) \implies x_{k+1} := \tilde{x}.$$

Algorithm: SuperPolyak

Input: $x_0 \in \mathbb{R}^d$.

Repeat for $k = 0, 1, \ldots$

Attempt a superlinear step:

$$\tilde{x} = \texttt{PolyakBundle}(x_k, (3/2)^k)$$

If \tilde{x} available and sufficient decrease:

$$f(\tilde{x}) \leq \frac{1}{2}f(x_k) \implies x_{k+1} := \tilde{x}.$$

Else: run Fallback method from x_k until objective halved.

$$x_{k+1} := \operatorname{Fallback}\left(x_k, \frac{1}{2}f(x_k)\right).$$

Algorithm: SuperPolyak

Input: $x_0 \in \mathbb{R}^d$.

Repeat for $k = 0, 1, \ldots$

Attempt a superlinear step:

$$\tilde{x} = \texttt{PolyakBundle}(x_k, (3/2)^k)$$

If \tilde{x} available and sufficient decrease:

$$f(\tilde{x}) \leq \frac{1}{2}f(x_k) \implies x_{k+1} := \tilde{x}.$$

Else: run Fallback method from x_k until objective halved.

$$x_{k+1} := \texttt{Fallback}\Big(x_k, \frac{1}{2}f(x_k)\Big).$$

Question: which algorithm can we use as fallback method?

Algorithm: SuperPolyak

Input: $x_0 \in \mathbb{R}^d$.

Repeat for $k = 0, 1, \ldots$

Attempt a superlinear step:

$$\tilde{x} = \texttt{PolyakBundle}(x_k, (3/2)^k)$$

If \tilde{x} available and sufficient decrease:

$$f(\tilde{x}) \leq \frac{1}{2}f(x_k) \implies x_{k+1} := \tilde{x}.$$

Else: run Fallback method from x_k until objective halved.

$$x_{k+1} := \operatorname{Fallback}\left(x_k, \frac{1}{2}f(x_k)\right).$$

Theorem: C. and Davis, 2022 (informal)

SuperPolyak with the Polyak subgradient method as fallback enters the region of superlinear convergence in O(d) iterations, as long as x_0 is in a dimension-independent region around \bar{x} .

Problem: find x s.t. F(x) = 0.

¹Qi & Sun, '93.

Problem: find x s.t. F(x) = 0.

Classical guarantees. Suppose that F satisfies:

1. Semismoothness: for all x near \bar{x} and $A \in \partial F(x)$,

$$||F(x) + A(\bar{x} - x)|| = o(||x - \bar{x}||)$$

¹Qi & Sun, '93.

Problem: find x s.t. F(x) = 0.

Classical guarantees. Suppose that F satisfies:

1. Semismoothness: for all x near \bar{x} and $A \in \partial F(x)$,

$$||F(x) + A(\bar{x} - x)|| = o(||x - \bar{x}||)$$

2. Invertibility: Clarke Jacobian $\partial F(x)$ invertible for x near \bar{x} .

¹Qi & Sun, '93.

Problem: find x s.t. F(x) = 0.

Classical guarantees. Suppose that *F* satisfies:

1. Semismoothness: for all x near \bar{x} and $A \in \partial F(x)$,

$$||F(x) + A(\bar{x} - x)|| = o(||x - \bar{x}||)$$

2. Invertibility: Clarke Jacobian $\partial F(x)$ invertible for x near \bar{x} .

Then the *semismooth Newton* method converges locally superlinearly:¹

$$x_{k+1} := x_k - A_k^{-1} F(x_k), \quad A_k \in \partial F(x_k).$$

¹Qi & Sun, '93.

Problem: find x s.t. F(x) = 0.

Classical guarantees. Suppose that F satisfies:

1. Semismoothness: for all x near \bar{x} and $A \in \partial F(x)$,

$$||F(x) + A(\bar{x} - x)|| = o(||x - \bar{x}||)$$

2. Invertibility: Clarke Jacobian $\partial F(x)$ invertible for x near \bar{x} .

Then the *semismooth Newton* method converges locally superlinearly:¹

$$x_{k+1} := x_k - A_k^{-1} F(x_k), \quad A_k \in \partial F(x_k).$$

Question: is superlinear convergence possible without invertibility condition?

¹Qi & Sun, '93.

Problem: find x s.t. F(x) = 0.

Assumptions. Suppose that *F* satisfies:

1. Semismoothness: for all x near \bar{x} and $A(x) \in \partial F(x)$,

$$||F(x) + A(\bar{x} - x)|| = o(||x - \bar{x}||)$$

2. Metric subregularity: for x near \bar{x} ,

 $||F(x)|| \ge \mu ||x - \bar{x}||.$

¹Qi & Sun, '93.

Problem: find x s.t. F(x) = 0.

Assumptions. Suppose that *F* satisfies:

1. Semismoothness: for all x near \bar{x} and $A(x) \in \partial F(x)$,

$$||F(x) + A(\bar{x} - x)|| = o(||x - \bar{x}||)$$

2. Metric subregularity: for x near \bar{x} ,

$$||F(x)|| \ge \mu ||x - \bar{x}||.$$

Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally superlinearly.

Natural fallback method: fixed-point iteration

$$z_{i+1} := T(z_i)$$
, where $T := I - F$.

¹Qi & Sun, '93.

Goal: recover *s*-sparse $x_{\sharp} \in \mathbb{R}^d$ from $y = Ax_{\sharp} \in \mathbb{R}^m$ $(m \ll d)$.

$$\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{2} \left\| Ax - b \right\|^{2} + \lambda \left\| x \right\|_{1} \right\}$$

Goal: recover *s*-sparse $x_{\sharp} \in \mathbb{R}^d$ from $y = Ax_{\sharp} \in \mathbb{R}^m$ ($m \ll d$).

$$\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{2} \left\| Ax - b \right\|^{2} + \lambda \left\| x \right\|_{1} \right\}$$

Fallback algorithm: proximal gradient (ISTA).

$$x_{k+1} = T(x_k) := \operatorname{prox}_{\lambda \| \cdot \|_1} (x_k - \tau A^{\mathsf{T}} (Ax_k - y))$$

$$f(x) := \| (I - T)(x) \|.$$

Goal: recover *s*-sparse $x_{\sharp} \in \mathbb{R}^d$ from $y = Ax_{\sharp} \in \mathbb{R}^m$ ($m \ll d$).

$$\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{2} \left\| Ax - b \right\|^{2} + \lambda \left\| x \right\|_{1} \right\}$$

Fallback algorithm: proximal gradient (ISTA).

$$x_{k+1} = T(x_k) := \operatorname{prox}_{\lambda \| \cdot \|_1} (x_k - \tau A^{\mathsf{T}} (Ax_k - y))$$

$$f(x) := \| (I - T)(x) \|.$$

Note: I - T metrically subregular but need not satisfy invertibility condition!

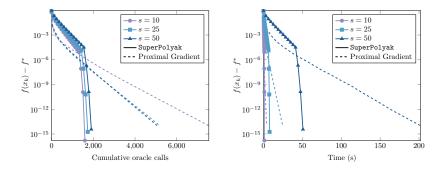
Goal: recover *s*-sparse $x_{\sharp} \in \mathbb{R}^d$ from $y = Ax_{\sharp} \in \mathbb{R}^m$ ($m \ll d$).

$$\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{2} \left\| Ax - b \right\|^{2} + \lambda \left\| x \right\|_{1} \right\}$$

Fallback algorithm: proximal gradient (ISTA).

$$x_{k+1} = T(x_k) := \operatorname{prox}_{\lambda \| \cdot \|_1} (x_k - \tau A^{\mathsf{T}} (Ax_k - y))$$

$$f(x) := \| (I - T)(x) \|.$$



Problem: find $\bar{x} \in \mathcal{X}_* = \mathcal{X}_1 \cap \mathcal{X}_2$, \mathcal{X}_1 and \mathcal{X}_2 closed.

¹Drusvyatskiy '13. ²Lewis, Luke & Malick '09. ³C.H.J. Pang '15.

Problem: find $\bar{x} \in \mathcal{X}_* = \mathcal{X}_1 \cap \mathcal{X}_2$, \mathcal{X}_1 and \mathcal{X}_2 closed.

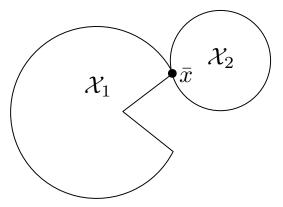


Figure: Semialgebraic sets intersecting at a single point \bar{x} .

¹Drusvyatskiy '13.

²Lewis, Luke & Malick '09.

³C.H.J. Pang '15.

Problem: find $\bar{x} \in \mathcal{X}_* = \mathcal{X}_1 \cap \mathcal{X}_2$, \mathcal{X}_1 and \mathcal{X}_2 closed.

Setting I: intersections of semialgebraic sets.

1. The family $\{X_1, X_2\}$ is μ -linearly regular:

 $\operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \ge \mu \operatorname{dist}(x, \mathcal{X}_*)$ for all x near \bar{x} .

¹Drusvyatskiy '13. ²Lewis, Luke & Malick '09. ³C.H.J. Pang '15.

Problem: find $\bar{x} \in \mathcal{X}_* = \mathcal{X}_1 \cap \mathcal{X}_2$, \mathcal{X}_1 and \mathcal{X}_2 closed.

Setting I: intersections of semialgebraic sets.

1. The family $\{X_1, X_2\}$ is μ -linearly regular:

 $\operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \ge \mu \operatorname{dist}(x, \mathcal{X}_*)$ for all x near \bar{x} .

2. Every \mathcal{X}_i is semialgebraic and $\mathcal{X}_* = \{\bar{x}\}.$

¹Drusvyatskiy '13. ²Lewis, Luke & Malick '09. ³C.H.J. Pang '15.

Problem: find $\bar{x} \in \mathcal{X}_* = \mathcal{X}_1 \cap \mathcal{X}_2$, \mathcal{X}_1 and \mathcal{X}_2 closed.

Setting I: intersections of semialgebraic sets.

1. The family $\{X_1, X_2\}$ is μ -linearly regular:

 $\operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \ge \mu \operatorname{dist}(x, \mathcal{X}_*)$ for all x near \bar{x} .

2. Every \mathcal{X}_i is semialgebraic and $\mathcal{X}_* = \{\bar{x}\}.$

Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally superlinearly.

Natural fallback method: alternating projections algorithm.¹

 $z_{i+1} := \mathcal{P}_{\mathcal{X}_2}\left(\mathcal{P}_{\mathcal{X}_1}(z_i)\right).$

¹Drusvyatskiy '13. ²Lewis, Luke & Malick '09.

Lewis, Luke & Malick

³C.H.J. Pang '15.

Problem: find $\bar{x} \in \mathcal{X}_* = \mathcal{X}_1 \cap \mathcal{X}_2$, \mathcal{X}_1 and \mathcal{X}_2 closed.

Setting II: intersections of manifolds.

1. The family $\{X_1, X_2\}$ is μ -linearly regular:

 $\operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \ge \mu \operatorname{dist}(x, \mathcal{X}_*)$ for all x near \bar{x} .

¹Drusvyatskiy '13. ²Lewis, Luke & Malick '09. ³C.H.J. Pang '15.

Problem: find $\bar{x} \in \mathcal{X}_* = \mathcal{X}_1 \cap \mathcal{X}_2$, \mathcal{X}_1 and \mathcal{X}_2 closed.

Setting II: intersections of manifolds.

1. The family $\{X_1, X_2\}$ is μ -linearly regular:

 $\operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \ge \mu \operatorname{dist}(x, \mathcal{X}_*)$ for all x near \bar{x} .

2. Every \mathcal{X}_i is a C^2 manifold near \bar{x} .

¹Drusvyatskiy '13. ²Lewis, Luke & Malick '09. ³C.H.J. Pang '15.

Problem: find $\bar{x} \in \mathcal{X}_* = \mathcal{X}_1 \cap \mathcal{X}_2$, \mathcal{X}_1 and \mathcal{X}_2 closed.

Setting II: intersections of manifolds.

1. The family $\{X_1, X_2\}$ is μ -linearly regular:

 $\operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \ge \mu \operatorname{dist}(x, \mathcal{X}_*)$ for all x near \bar{x} .

2. Every \mathcal{X}_i is a C^2 manifold near \bar{x} .

Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally quadratically.

Natural fallback method: alternating projections algorithm.²

 $z_{i+1} := \mathcal{P}_{\mathcal{X}_2}\left(\mathcal{P}_{\mathcal{X}_1}(z_i)\right).$

¹Drusvyatskiy '13.

²Lewis, Luke & Malick '09.

³C.H.J. Pang '15.

Problem: find $\bar{x} \in \mathcal{X}_* = \mathcal{X}_1 \cap \mathcal{X}_2$, \mathcal{X}_1 and \mathcal{X}_2 closed.

Setting II: intersections of manifolds.

1. The family $\{X_1, X_2\}$ is μ -linearly regular:

 $\operatorname{dist}(x, \mathcal{X}_1) + \operatorname{dist}(x, \mathcal{X}_2) \ge \mu \operatorname{dist}(x, \mathcal{X}_*)$ for all x near \bar{x} .

2. Every \mathcal{X}_i is a C^2 manifold near \bar{x} .

Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally quadratically.

Natural fallback method: alternating projections algorithm.²

 $z_{i+1} := \mathcal{P}_{\mathcal{X}_2} \left(\mathcal{P}_{\mathcal{X}_1}(z_i) \right).$

Related work: QP-based algorithm that converges under similar conditions.³

¹Drusvyatskiy '13.

²Lewis, Luke & Malick '09.

³C.H.J. Pang '15.

Example: complex phase retrieval

Complex phase retrieval: given $y_{\sharp} \in \mathbb{R}^m$ with $(y_{\sharp})_i = |\langle a_i, x_{\sharp} \rangle|$:

find $\hat{y} \in \mathcal{Y}_1 \cap \mathcal{Y}_2$, $\mathcal{Y}_1 := \{ u \in \mathbb{C}^m \mid |u| = y \}, \mathcal{Y}_2 := \operatorname{Range}(A).$

⁴Waldspurger '18.

Example: complex phase retrieval

Complex phase retrieval: given $y_{\sharp} \in \mathbb{R}^m$ with $(y_{\sharp})_i = |\langle a_i, x_{\sharp} \rangle|$:

find $\hat{y} \in \mathcal{Y}_1 \cap \mathcal{Y}_2$, $\mathcal{Y}_1 := \{ u \in \mathbb{C}^m \mid |u| = y \}$, $\mathcal{Y}_2 := \text{Range}(A)$.

Fallback algorithm: alternating projections⁴.

$$y_{k+1} = T(y_k) := AA^{\dagger} (y_{\sharp} \odot \operatorname{phase}(y_k))$$

Function used by PolyakBundle: $f(y) := dist(y, \mathcal{Y}_1) + dist(y, \mathcal{Y}_2)$.

⁴Waldspurger '18.

Example: complex phase retrieval

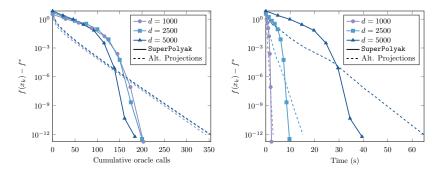
Complex phase retrieval: given $y_{\sharp} \in \mathbb{R}^m$ with $(y_{\sharp})_i = |\langle a_i, x_{\sharp} \rangle|$:

find $\hat{y} \in \mathcal{Y}_1 \cap \mathcal{Y}_2$, $\mathcal{Y}_1 := \{ u \in \mathbb{C}^m \mid |u| = y \}, \ \mathcal{Y}_2 := \operatorname{Range}(A).$

Fallback algorithm: alternating projections⁴.

$$y_{k+1} = T(y_k) := AA^{\dagger} (y_{\sharp} \odot \operatorname{phase}(y_k))$$

Function used by PolyakBundle: $f(y) := dist(y, \mathcal{Y}_1) + dist(y, \mathcal{Y}_2)$.



⁴Waldspurger '18.

Concluding remarks

Not covered in this talk:

- Results for non-isolated \mathcal{X}_* via a uniformization of semismoothness.⁵
- Provable early termination strategies for PolyakBundle loop.
 - In practice, lead to small (even constant-sized) linear systems.

Concluding remarks

Not covered in this talk:

- Results for non-isolated \mathcal{X}_* via a uniformization of semismoothness.⁵
- Provable early termination strategies for PolyakBundle loop.
 - In practice, lead to small (even constant-sized) linear systems.

Open questions:

- 1. Reduce dim. dependence of local convergence region of PolyakBundle.
- 2. Remove requirement that $f_* = \min f$ is known.
- 3. Layer on top of existing large-scale solvers (LPs? QPs?)

Concluding remarks

Not covered in this talk:

- Results for non-isolated \mathcal{X}_* via a uniformization of semismoothness.⁵
- Provable early termination strategies for PolyakBundle loop.
 - In practice, lead to small (even constant-sized) linear systems.

Open questions:

- 1. Reduce dim. dependence of local convergence region of PolyakBundle.
- 2. Remove requirement that $f_* = \min f$ is known.
- 3. Layer on top of existing large-scale solvers (LPs? QPs?)

Thank you!

arXiv:abs/2201.04611

⁵Davis et al. '21

Example: low-rank matrix sensing

Bilinear sensing: recover low-rank factors U_{\sharp}, V_{\sharp} from bilinear measurements:

$$y_i = \ell_i^{\mathsf{T}} U_{\sharp} V_{\sharp}^{\mathsf{T}} r_i, \quad \ell_i, r_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I_d).$$

Example: low-rank matrix sensing

Bilinear sensing: recover low-rank factors U_{\sharp}, V_{\sharp} from bilinear measurements:

$$y_i = \ell_i^{\mathsf{T}} U_{\sharp} V_{\sharp}^{\mathsf{T}} r_i, \quad \ell_i, r_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I_d).$$

Loss function⁶:

$$f(U,V) = \frac{1}{m} \sum_{i=1}^{m} \left| y_i - \ell_i^{\mathsf{T}} U V^{\mathsf{T}} r_i \right|.$$

Fallback algorithm: Polyak subgradient method.

Example: low-rank matrix sensing

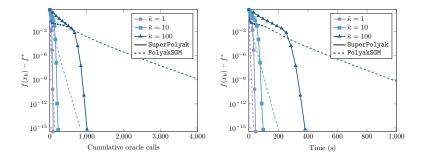
Bilinear sensing: recover low-rank factors U_{\sharp}, V_{\sharp} from bilinear measurements:

$$y_i = \ell_i^{\mathsf{T}} U_{\sharp} V_{\sharp}^{\mathsf{T}} r_i, \quad \ell_i, r_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I_d).$$

Loss function⁶:

$$f(U,V) = \frac{1}{m} \sum_{i=1}^{m} \left| y_i - \ell_i^{\mathsf{T}} U V^{\mathsf{T}} r_i \right|.$$

Fallback algorithm: Polyak subgradient method.



⁶C. et al., '21

Example: max-linear regression

Max-linear regression: recover unknown "slopes" $\beta_1^{\sharp}, \ldots, \beta_r^{\sharp}$ from

$$y_i = \max_{j \in [r]} \left\langle a_i, \beta_j^{\sharp} \right\rangle$$
 where $a_i \sim \mathcal{N}(0, I_d)$.

Example: max-linear regression

Max-linear regression: recover unknown "slopes" $\beta_1^{\sharp}, \ldots, \beta_r^{\sharp}$ from

$$y_i = \max_{j \in [r]} \left\langle a_i, \beta_j^{\sharp} \right\rangle$$
 where $a_i \sim \mathcal{N}(0, I_d)$.

Loss function:

$$f(\beta_1,\ldots,\beta_r) = \frac{1}{m} \sum_{i=1}^m \left| y_i - \max_{j \in [r]} \langle a_i, \beta_j \rangle \right|.$$

Fallback algorithm: Polyak subgradient method.

Example: max-linear regression

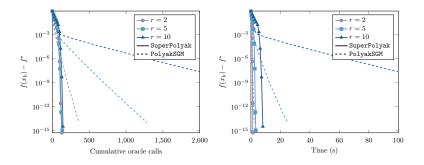
Max-linear regression: recover unknown "slopes" $\beta_1^{\sharp}, \ldots, \beta_r^{\sharp}$ from

$$y_i = \max_{j \in [r]} \left\langle a_i, \beta_j^{\sharp} \right\rangle$$
 where $a_i \sim \mathcal{N}(0, I_d)$.

Loss function:

$$f(\beta_1, \dots, \beta_r) = \frac{1}{m} \sum_{i=1}^m \left| y_i - \max_{j \in [r]} \langle a_i, \beta_j \rangle \right|.$$

Fallback algorithm: Polyak subgradient method.



From projection problem to linear system:

$$\begin{aligned} \operatorname{argmin} \left\{ \|x - x_k\|^2 \mid f(y_i) + \langle v_i, x - y_i \rangle = 0 \right\} \\ &= \operatorname{argmin} \left\{ \|x - x_k\|^2 \mid \langle v_i, x - x_k \rangle = \langle v_i, y_i - x_k \rangle - f(y_i) \right\} \\ &= \operatorname{argmin} \left\{ \|z\|^2 \mid \langle v_i, z \rangle = \langle v_i, y_i - x_k \rangle - f(y_i) \right\} \\ &= \operatorname{argmin} \left\{ \|z\|^2 \mid Az + [f(y_i) + \langle v_i, x_k - y_i \rangle]_i = 0 \right\} \end{aligned}$$

Least-norm solution of Ax + b = 0: $x = -A^{\dagger}b$.