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Setting

Goal: fast first-order algorithms for

argmin
x∈Rd

f(x) where min f = 0,

under the following assumptions:

• f nonsmooth, locally Lipschitz.

• f satisfies classical sharp growth condition:

f(x) ≥ µdist(x,X∗), X∗ = argmin f.

1Hoffman ’52.
2J.S. Pang ’93; Ioffe ’80s.
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f(x) where min f = 0,

under the following assumptions:

• f nonsmooth, locally Lipschitz.

• f satisfies classical sharp growth condition:

f(x) ≥ µ dist(x,X∗), X∗ = argmin f.

Classical example: Hoffman bound for LPs / linear inequalities.1

dist(x, {x | Ax ≤ b}) ≤ HA ∥(Ax− b)+∥
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Setting

Goal: fast first-order algorithms for

argmin
x∈Rd

f(x) where min f = 0,

under the following assumptions:

• f nonsmooth, locally Lipschitz.

• f satisfies classical sharp growth condition:

f(x) ≥ µ dist(x,X∗), X∗ = argmin f.

Fast algorithms?

1Hoffman ’52.
2J.S. Pang ’93; Ioffe ’80s.



Sharp growth and rapid convergence

Subgradient method:

xk+1 := xk − αk
vk

∥vk∥
, vk ∈ ∂f(xk)︸ ︷︷ ︸

Clarke subdifferential

.

Theorem: {xk} converge linearly with Polyak step size:

αk =
f(xk)

∥vk∥
.

- Classically known for convex functions1.

- Recently generalized for weakly convex functions2.

Key example : f = (convex) ◦ (smooth).

Question: Faster than linear convergence using only subgradients?

1Polyak ’69.
2Davis et al. ’18.
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An answer in pictures
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Figure: Our algorithm (SuperPolyak) applied to a matrix sensing problem with
dimensions (d, r) = (215, 2) and m = 219 measurements. Here, κ̃ is the condition
number of the unknown matrix.

Algorithm converges superlinearly, with fewer subgradient oracle calls. How?



Motivation: Polyak bundle

Simplifying assumption: problem has unique solution x̄.

Polyak step equivalent to:

xk+1 := argmin
x

{∥x− xk∥2 | f(xk) + ⟨vk, x− xk⟩ ≤ 0} , vk ∈ ∂f(xk).

To improve convergence, can try to use a bundle (yi, vi ∈ ∂f(yi)):

xk+1 := argmin
x

{∥x− xk∥2 | f(yi) + ⟨vi, x− yi⟩ ≤ 0, for all i} .

• Note: x̄ always feasible when f is convex.

• Bundle points yi chosen among the past k iterates.

• Each step requires solving a QP.

Guarantees?

- Good practical performance, but rate similar to subgradient method.3

3Polyak 87’.
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Main idea.

• Replace QP by a linear system:
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{∥x− xk∥2 | f(yi) + ⟨vi, x− yi⟩ = 0, for all i} ,
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Problem admits closed-form solution:

xk+1 = xk −A†

f(y0) + ⟨v0, xk − y0⟩
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v
T
0
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⇒ Implies x̄ is nearly feasible for system of equations!

Semismoothness is common. Satisfied by:

• Convex and smooth, and (convex) ◦ (smooth) functions.

• Any semialgebraic function.1
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Algorithm PolyakBundle(x, τ)

y0 := x; v0 ∈ ∂f(y0); A1 = [vT0 ].

for i = 1, . . . , d do

yi := y0 −A†
i [f(yj) + ⟨vj , y0 − yj⟩]

i−1

j=0
; Ai+1 :=

[
Ai

vTi

]
for vi ∈ ∂f(yi)

return ys, where s = argmini:∥yi−y0∥≤τf(y0)
f(yi)
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Note: first bundle point recovers Polyak subgradient step:

y1 = y0 − (vT0 )
†(f(y0) + ⟨v0, y0 − y0⟩) = y0 −

f(y0)

∥v0∥2
v0.
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Strategy. Sharpness and semismoothness lead to “lemma of alternatives”:

1. Suppose that y0, . . . , yj−1 have not improved superlinearly.

2. Then, either one of the following must hold:
yj improves superlinearly upon x;

rank(Aj) = j + 1.

3. Since Aj ∈ R(j+1)×d, superlinear improvement achieved within d steps.
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Assume x near x̄ and τ is sufficiently large. Then

f(PolyakBundle(x, τ)) = o(f(x)).

✓ Provable early termination strategies available.

✓ Sequence of linear systems solved incrementally (QR-based algorithm).

✗ Issue: region of local convergence ∝ exp(−d).
- Fix: couple with linearly convergent method (e.g., subgradient).
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High-level overview



Algorithm: SuperPolyak

Input: x0 ∈ Rd.

Repeat for k = 0, 1, . . .

Attempt a superlinear step:

x̃ = PolyakBundle(xk, (3/2)
k)

If x̃ available and sufficient decrease:

f(x̃) ≤ 1

2
f(xk) =⇒ xk+1 := x̃.

Else: run Fallback method from xk until objective halved.

xk+1 := Fallback
(
xk,

1

2
f(xk)

)
.
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Question: which algorithm can we use as fallback method?



Algorithm: SuperPolyak

Input: x0 ∈ Rd.

Repeat for k = 0, 1, . . .

Attempt a superlinear step:

x̃ = PolyakBundle(xk, (3/2)
k)

If x̃ available and sufficient decrease:

f(x̃) ≤ 1

2
f(xk) =⇒ xk+1 := x̃.

Else: run Fallback method from xk until objective halved.

xk+1 := Fallback
(
xk,

1

2
f(xk)

)
.

Theorem: C. and Davis, 2022 (informal)

SuperPolyak with the Polyak subgradient method as fallback enters the
region of superlinear convergence in O(d) iterations, as long as x0 is in a
dimension-independent region around x̄.
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Consequences: root-finding problems

Problem: find x s.t. F (x) = 0.

Classical guarantees. Suppose that F satisfies:

1. Semismoothness: for all x near x̄ and A ∈ ∂F (x),

∥F (x) +A(x̄− x)∥ = o(∥x− x̄∥)

2. Invertibility: Clarke Jacobian ∂F (x) invertible for x near x̄.

Then the semismooth Newton method converges locally superlinearly:1

xk+1 := xk −A−1
k F (xk), Ak ∈ ∂F (xk).

Question: is superlinear convergence possible without invertibility condition?

1Qi & Sun, ’93.



Consequences: root-finding problems

Problem: find x s.t. F (x) = 0.

Assumptions. Suppose that F satisfies:

1. Semismoothness: for all x near x̄ and A(x) ∈ ∂F (x),
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Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally superlinearly.

Natural fallback method: fixed-point iteration

zi+1 := T (zi), where T := I − F.

1Qi & Sun, ’93.



Example: LASSO

Goal: recover s-sparse x♯ ∈ Rd from y = Ax♯ ∈ Rm (m ≪ d).

argmin
x∈Rd

{1

2
∥Ax− b∥2 + λ ∥x∥1

}

Fallback algorithm: proximal gradient (ISTA).

xk+1 = T (xk) := proxλ∥·∥1

(
xk − τAT(Axk − y)

)
f(x) := ∥(I − T )(x)∥ .

Note: I − T metrically subregular but need not satisfy invertibility condition!
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Consequences: feasibility problems

Problem: find x̄ ∈ X∗ = X1 ∩ X2, X1 and X2 closed.

1Drusvyatskiy ’13.
2Lewis, Luke & Malick ’09.
3C.H.J. Pang ’15.
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X1
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x̄

Figure: Semialgebraic sets intersecting at a single point x̄.
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Consequences: feasibility problems

Problem: find x̄ ∈ X∗ = X1 ∩ X2, X1 and X2 closed.

Setting I: intersections of semialgebraic sets.

1. The family {X1,X2} is µ-linearly regular:

dist(x,X1) + dist(x,X2) ≥ µ dist(x,X∗) for all x near x̄.

2. Every Xi is semialgebraic and X∗ = {x̄}.
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Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally superlinearly.

Natural fallback method: alternating projections algorithm.1

zi+1 := PX2 (PX1(zi)) .
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Related work: QP-based algorithm that converges under similar conditions.3
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Example: complex phase retrieval

Complex phase retrieval: given y♯ ∈ Rm with (y♯)i = |⟨ai, x♯⟩|:

find ŷ ∈ Y1 ∩ Y2, Y1 := {u ∈ Cm | |u| = y} , Y2 := Range(A).

Fallback algorithm: alternating projections4.

yk+1 = T (yk) := AA† (y♯ ⊙ phase(yk))

Function used by PolyakBundle: f(y) := dist(y,Y1) + dist(y,Y2).

0 50 100 150 200 250 300 350

10−12

10−9

10−6

10−3

100

Cumulative oracle calls

f
(x

k
)
−
f
∗

d = 1000
d = 2500
d = 5000
SuperPolyak

Alt. Projections

0 10 20 30 40 50 60

10−12

10−9

10−6

10−3

100

Time (s)

f
(x

k
)
−
f
∗

d = 1000
d = 2500
d = 5000
SuperPolyak

Alt. Projections

4Waldspurger ’18.



Example: complex phase retrieval

Complex phase retrieval: given y♯ ∈ Rm with (y♯)i = |⟨ai, x♯⟩|:

find ŷ ∈ Y1 ∩ Y2, Y1 := {u ∈ Cm | |u| = y} , Y2 := Range(A).

Fallback algorithm: alternating projections4.

yk+1 = T (yk) := AA† (y♯ ⊙ phase(yk))

Function used by PolyakBundle: f(y) := dist(y,Y1) + dist(y,Y2).

0 50 100 150 200 250 300 350

10−12

10−9

10−6

10−3

100

Cumulative oracle calls

f
(x

k
)
−
f
∗

d = 1000
d = 2500
d = 5000
SuperPolyak

Alt. Projections

0 10 20 30 40 50 60

10−12

10−9

10−6

10−3

100

Time (s)

f
(x

k
)
−
f
∗

d = 1000
d = 2500
d = 5000
SuperPolyak

Alt. Projections

4Waldspurger ’18.



Example: complex phase retrieval

Complex phase retrieval: given y♯ ∈ Rm with (y♯)i = |⟨ai, x♯⟩|:
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Concluding remarks

Not covered in this talk:

• Results for non-isolated X∗ via a uniformization of semismoothness.5

• Provable early termination strategies for PolyakBundle loop.
- In practice, lead to small (even constant-sized) linear systems.

Open questions:

1. Reduce dim. dependence of local convergence region of PolyakBundle.

2. Remove requirement that f∗ = min f is known.

3. Layer on top of existing large-scale solvers (LPs? QPs?)

Thank you!

arXiv:abs/2201.04611

5Davis et al. ’21

https://arxiv.org/abs/2201.04611
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Example: low-rank matrix sensing

Bilinear sensing: recover low-rank factors U♯, V♯ from bilinear measurements:

yi = ℓTi U♯V
T
♯ ri, ℓi, ri

iid∼ N (0, Id).

Loss function6:

f(U, V ) =
1

m

m∑
i=1

∣∣yi − ℓTi UV Tri
∣∣ .

Fallback algorithm: Polyak subgradient method.
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Example: max-linear regression

Max-linear regression: recover unknown “slopes” β♯
1, . . . , β

♯
r from

yi = max
j∈[r]

〈
ai, β

♯
j

〉
where ai ∼ N (0, Id).

Loss function:

f(β1, . . . , βr) =
1

m

m∑
i=1

∣∣∣∣yi −max
j∈[r]

⟨ai, βj⟩
∣∣∣∣ .

Fallback algorithm: Polyak subgradient method.
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From projection problem to linear system:

argmin {∥x− xk∥2 | f(yi) + ⟨vi, x− yi⟩ = 0}

= argmin {∥x− xk∥2 | ⟨vi, x− xk⟩ = ⟨vi, yi − xk⟩ − f(yi)}

= argmin {∥z∥2 | ⟨vi, z⟩ = ⟨vi, yi − xk⟩ − f(yi)}

= argmin {∥z∥2 | Az + [f(yi) + ⟨vi, xk − yi⟩]i = 0}

Least-norm solution of Ax+ b = 0: x = −A†b.
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