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under the following assumptions:
f nonsmooth, locally Lipschitz.

f satisfies classical sharp growth condition:

f(x) > pdist(z, Xy), X. = argmin f.
Set intersection problems: given X, X closed,
find Z € Xy N X2 & argmin {dist(z, X1) + dist(z, X2)} .

Growth condition known as linear regularity:
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Setting
Goal: fast first-order algorithms for

argmin f(z) where min f =0,
z€eR4

under the following assumptions:
f nonsmooth, locally Lipschitz.

f satisfies classical sharp growth condition:

f(z) > pdist(z, Xy), X. = argmin f.

Fast algorithms?

Hoffman '52.
2].S. Pang '93; loffe '80s.
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Sharp growth and rapid convergence

Subgradient method:
Vk
Tk41 = Tk — akm, Vi € Bf(l'k) .
k
Clarke subdifferential

Theorem: {x;} converge linearly with Polyak step size:

_ flxw)

el

- Classically known for convex functions?.

- Recently generalized for weakly convex functions.

Key example :  f = (convex) o (smooth).

Question: Faster than linear convergence using only subgradients?

LPolyak '69.
2Davis et al. '18.
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Figure: Our algorithm (SuperPolyak)

An answer in pictures
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pplied to a matrix sensing problem with

a
dimensions (d,r) = (219,2) and m = 219 measurements. Here, & is the condition
number of the unknown matrix.

1,000

Algorithm converges superlinearly, with fewer subgradient oracle calls. How?
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Simplifying assumption: problem has unique solution .
Polyak step equivalent to:

pr1 = argmin {||lz — zx|* | f(zr) + (vp, 2 — 21) <O}, v € Of (xk).
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Each step requires solving a QP.
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Motivation: Polyak bundle

Simplifying assumption: problem has unique solution .
Polyak step equivalent to:

pr1 = argmin {||lz — zx|* | f(zr) + (vp, 2 — 21) <O}, v € Of (xk).

To improve convergence, can try to use a bundle (y;,v; € 9f(y:)):
Tpy1 = argmin {||z — zx||* | f(y:) + (vi,x —y;) <0, for all i} .
Note: T always feasible when f is convex.

Bundle points y; chosen among the past k iterates.

Each step requires solving a QP.

Guarantees?

- Good practical performance, but rate similar to subgradient method.?

3Polyak 87'.
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Our approach

Main idea.

Replace QP by a linear system:
yr1 = argmin { ||z — zxl|* | f(yi) + (vi, @ — yi) = 0, for all i},

Choose bundle points y; “carefully”.

Problem admits closed-form solution:

J (o) + (vo, Tk — Yo) vg
Tppr =ap — AT , where A=|:
Fyi) + (vi, o — i) v}
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Our approach

Main idea.

Replace QP by a linear system:
2t = argmin {2 — i |* | F(y:) + (i, — ys) = 0, for all i},

Choose bundle points y; “carefully”.

Key additional assumption: Semismoothness.

f@)+ v,z —x) =o(|z — Z||), forvedf(zx)and as z — Z.
= Implies Z is nearly feasible for system of equations!
Semismoothness is common. Satisfied by:

Convex and smooth, and (convex) o (smooth) functions.

Any semialgebraic function.!

1Bolte, Daniilidis & Lewis '09.



Our approach

Main idea.

Replace QP by a linear system:
2t = argmin {2 — i |* | F(y:) + (i, — ys) = 0, for all i},

Choose bundle points y; “carefully”.

Key additional assumption: Semismoothness.
f@)+ v,z —x) =o(|z — Z||), forvedf(zx)and as z — Z.

= Implies Z is nearly feasible for system of equations!

Question: How to choose the bundle points {y;}?

1Bolte, Daniilidis & Lewis '09.
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Algorithm PolyakBundle(z, T)

Yo :=x; vo € f (yo); A1 = [v]].
fori:l,...,ddo

i— Az
vi =90 — AL [f(us) + (0,90 =y i A = |:’UT:| for vi € Af(ys)

k3

return y,, where s = argmin,. ., 1<+ (o) J (¥i)

Note: first bundle point recovers Polyak subgradient step:

f(yo)

21}0.
l[voll

y1 =10 — (v9)"(f(50) + (vo, Yo — o)) = yo —



Algorithm PolyakBundle(z, T)
Yo 1= x; vo € Of (yo); A1 = [vg].

fori=1,...,ddo
_ T i—1 Az
yi=yo = A (i) + (Wiyo — i)l i A= |7

} for v; € Of (ys)

return y,, where s = argmin,. ., 1<+ (o) J (¥i)

Strategy. Sharpness and semismoothness lead to “lemma of alternatives”
1. Suppose that yo,...,yj—1 have not improved superlinearly.
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y; improves superlinearly upon x;

rank(A;) =7+ 1.



Algorithm PolyakBundle(z, T)
Yo 1= x; vo € Of (yo); A1 = [vg].

fori=1,...,ddo
t i—1 Az
yi=yo = A (i) + (Wiyo — i)l i A= |7

} for v; € Of (ys)

return y,, where s = argmin,. ., 1<+ (o) J (¥i)

Strategy. Sharpness and semismoothness lead to “lemma of alternatives”

1. Suppose that yo,...,yj—1 have not improved superlinearly.

2. Then, either one of the following must hold:
y; improves superlinearly upon x;

rank(A;) =7+ 1.
3. Since A; € RUTDX4 superlinear improvement achieved within d steps



Algorithm PolyakBundle(z, T)

Yo :=m; vo € Of (yo); A1 = [vg].
fori=1,...,d do

i A;
;; A = |:’UT:| for v; € Of (ys)

1= i

yi = yo — Al [f(y;) + (vi, 5o — ;)]

return ys, where s = argming, ., 1< (o) f(¥i)

Theorem: C. & Davis, 2022 (informal)

Assume x near T and 7 is sufficiently large. Then

f(PolyakBundle(z, 7)) = o(f(x)).

v Provable early termination strategies available.

v Sequence of linear systems solved incrementally (QR-based algorithm).



Algorithm PolyakBundle(z, T)
Yo :=x; vo € Of(yo); A1 = [vg].

fori=1,...,ddo
t i—1 Az
yi=yo = A (i) + (Wiyo — i)l i A= |7

] for v; € Of (y:)

return ys, where s = argming, ., 1< (o) f(¥i)

Theorem: C. & Davis, 2022 (informal)
Assume x near T and 7 is sufficiently large. Then

f(PolyakBundle(z, 7)) = o(f(x)).

v Provable early termination strategies available.
v Sequence of linear systems solved incrementally (QR-based algorithm).

X lIssue: region of local convergence  exp(—d).
- Fix: couple with linearly convergent method (e.g., subgradient).




High-level overview

Linear convergence region

Superlinear convergence region
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Attempt a superlinear step:
i = PolyakBundle(zs, (3/2)%)
If Z available and sufficient decrease:
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ZTk+1 = Fallback (mk, gf(étk))



Algorithm: SuperPolyak

Input: z¢ € RY.
Repeat for k =0,1,...

Attempt a superlinear step:
i = PolyakBundle(zs, (3/2)%)
If Z available and sufficient decrease:

f(xk) — Tk4+1 = .

N[ =

f(@) <

Else: run Fallback method from xj until objective halved.

1
ZTk+1 = Fallback (xk, 5]‘(;1%))

Question: which algorithm can we use as fallback method?



Algorithm: SuperPolyak
Input: zo € R
Repeat for £k =0,1,...
Attempt a superlinear step:
i = PolyakBundle(zs, (3/2)%)

If Z available and sufficient decrease:

f(@) <

f(xk) = Tp41 =2

N | =

Else: run Fallback method from xj until objective halved.

1
Tht1 i= Fallback(xk, §f(:ck))

Theorem: C. and Davis, 2022 (informal)

SuperPolyak with the Polyak subgradient method as fallback enters the
region of superlinear convergence in O(d) iterations, as long as z is in a
dimension-independent region around .
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Consequences: root-finding problems

Problem: find = s.t. F(z) =0.

Classical guarantees. Suppose that I’ satisfies:
1. Semismoothness: for all z near z and A € 0F (),
|1F(x) + Az — 2)|| = o(|lx — z]])

2. Invertibility: Clarke Jacobian OF (z) invertible for = near Z.

Then the semismooth Newton method converges locally superlinearly:!

Tkt1 1= Tk — A;lF(mk), Ay € OF (xy).

Question: is superlinear convergence possible without invertibility condition?

1Qi & Sun, '93.



Consequences: root-finding problems

Problem: find = s.t. F(z) =0.
Assumptions. Suppose that I’ satisfies:
1. Semismoothness: for all = near Z and A(z) € OF(z),
I1F(z) + Az — 2)|| = o(l|lz — Z])
2. Metric subregularity: for x near 7,
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Consequences: root-finding problems

Problem: find z s.t. F(z) = 0.
Assumptions. Suppose that I’ satisfies:
1. Semismoothness: for all z near Z and A(z) € OF (z),
[1F(z) + AZ — 2)|| = o(|lx — z])
2. Metric subregularity: for x near Z,

IE @) = pllz =z

Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally superlinearly.
Natural fallback method: fixed-point iteration

zi41:=T(z), where T:=1-F.

1Qi & Sun, '93.
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Example: LASSO
Goal: recover s-sparse z; € R? from y = Az € R™ (m < d).

1 2
aﬁiﬁ,{;;“{i 1Az — bl* + Al }
Fallback algorithm: proximal gradient (ISTA).
Tp1 = T'(z) := proxy ., (zr — AT (Azy — v))
fla) =T =T) ()]l

Note: I — T metrically subregular but need not satisfy invertibility condition!



Example: LASSO
Goal: recover s-sparse z; € R? from y = Az € R™ (m < d).

. 1
argmin {5 | Az — || + X ||9U||1}

zERY
Fallback algorithm: proximal gradient (ISTA).
w1 = T(ar) := proxy, (wx — 7AT (Azg — y))
f@) = =T)(=)|-

—o—-s5s=10 —o—s=10
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Problem: find z € X, = X1 N X5, X} and X closed.
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Consequences: feasibility problems

Problem: find z € X, = X1 N X5, X} and X closed.

Figure: Semialgebraic sets intersecting at a single point Z.

!Drusvyatskiy '13.
%Lewis, Luke & Malick '09.
3C.H.J. Pang '15.



Consequences: feasibility problems

Problem: find z € X, = X1 N X5, X} and X closed.

Setting I: intersections of semialgebraic sets.

1. The family {X1, X2} is p-linearly regular:

dist(z, A1) + dist(x, X2) > pdist(z, Xi) for all z near Z.
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Consequences: feasibility problems
Problem: find z € X, = &1 N X2, X1 and X% closed.

Setting I: intersections of semialgebraic sets.

1. The family {X1, X2} is p-linearly regular:
dist(z, A1) + dist(x, X2) > pdist(z, Xi) for all z near Z.

2. Every X is semialgebraic and X, = {Z}.

Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally superlinearly.
Natural fallback method: alternating projections algorithm.!

zit1 1= Py (P, (2i)) -
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Consequences: feasibility problems

Problem: find z € X, = X1 N X5, X} and X closed.

Setting Il: intersections of manifolds.

1. The family {X1, X2} is p-linearly regular:

dist(z, A1) + dist(x, X2) > pdist(z, Xi) for all z near Z.
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Consequences: feasibility problems
Problem: find z € X, = &1 N X2, X1 and X% closed.

Setting Il: intersections of manifolds.

1. The family {X1, X2} is p-linearly regular:
dist(z, A1) + dist(x, X2) > pdist(z, Xi) for all z near Z.

2. Every X; is a C* manifold near z.

Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally quadratically.
Natural fallback method: alternating projections algorithm.?

zit1 1= Pxy (P, (2i)) -
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Consequences: feasibility problems
Problem: find z € X, = &1 N X2, X1 and X% closed.

Setting Il: intersections of manifolds.
1. The family {X1, X2} is p-linearly regular:

dist(z, A1) + dist(x, X2) > pdist(z, Xi) for all z near Z.

2. Every X; is a C* manifold near z.

Corollary: C. and Davis, 2022 (informal)

Under above assumptions, SuperPolyak converges locally quadratically.
Natural fallback method: alternating projections algorithm.?

zit1 = Pa, (PX1 (Zz)) .

Related work: QP-based algorithm that converges under similar conditions.?

!Drusvyatskiy '13.
2L ewis, Luke & Malick "09.
3C.H.J. Pang '15.



Example: complex phase retrieval
Complex phase retrieval: given y; € R™ with (yy): = |(as, z4)]:

find genNYe, V1 :={ueC™]|ul =y}, V2 :=Range(4).

“Waldspurger '18.



Example: complex phase retrieval
Complex phase retrieval: given y; € R™ with (yy): = |(as, z4)]:
find ge€elinNds, M:={ueC™||ul =y}, V2 :=Range(A).
Fallback algorithm: alternating projections®.
yer1 = T(yx) := AA" (y; © phase(yx))

Function used by PolyakBundle: f(y) := dist(y, V1) + dist(y, V2).

“Waldspurger '18.



Example: complex phase retrieval

Complex phase retrieval: given y; € R™ with (yy): = |(as, z4)]:

Fallback algorithm: alternating projections®.

find g€ )inNlo,

yerr = T(yr) == AA" (y; © phase(yx))

Vi :={ueC™||ul =y}, V2 := Range(A).

Function used by PolyakBundle: f(y) := dist(y, V1) + dist(y, V2).

100 —o—d = 1000 }
—m— d = 2500
—— d = 5000
1073 - 4, —— SuperPolyak b
Y --- Alt. Projections
1076 |- b
A
*y,
10791 Sy, 1
Ry
Ty
Y
10-12 | R
I I I I I
0 50 100 150 200 250 300 35

Cumulative oracle calls

“Waldspurger '18.
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Concluding remarks

Not covered in this talk:

Results for non-isolated X, via a uniformization of semismoothness.®

Provable early termination strategies for PolyakBundle loop.
- In practice, lead to small (even constant-sized) linear systems.

Davis et al. "21
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Provable early termination strategies for PolyakBundle loop.
- In practice, lead to small (even constant-sized) linear systems.

Open questions:
1. Reduce dim. dependence of local convergence region of PolyakBundle.
2. Remove requirement that f. = min f is known.

3. Layer on top of existing large-scale solvers (LPs? QPs?)
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Concluding remarks

Not covered in this talk:

Results for non-isolated X, via a uniformization of semismoothness.®

Provable early termination strategies for PolyakBundle loop.
- In practice, lead to small (even constant-sized) linear systems.

Open questions:
1. Reduce dim. dependence of local convergence region of PolyakBundle.
2. Remove requirement that f. = min f is known.

3. Layer on top of existing large-scale solvers (LPs? QPs?)

Thank you!
arXiv:abs/2201.04611
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Example: low-rank matrix sensing

Bilinear sensing: recover low-rank factors Uy, V} from bilinear measurements:

iid

Yi = fiTUnVnTH, Liyre ~ N(0,1q).
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Example: low-rank matrix sensing
Bilinear sensing: recover low-rank factors Uy, V} from bilinear measurements:
T T id
yi =L UV ry, Liyr il’lVN(O Iq).

Loss function®:

FU,V) Z|y, — LUV,

=1

Fallback algorithm: Polyak subgradient method.
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Example: low-rank matrix sensing

Bilinear sensing: recover low-rank factors Uy, V} from bilinear measurements:

Yi = K;I—UﬂVﬁTTi, 61’7 Ty ~ Ud

(0,1I4).
Loss function®:

U, v) =

Z lyi — UV 7y

i=1

Fallback algorithm: Polyak subgradient method.
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Example: max-linear regression

Max-linear regression: recover unknown “slopes” ﬂf, ..., Bt from

Yi = ma[u]< <ai,6§> where a; ~ N(0,14).
JE(r



Example: max-linear regression

Max-linear regression: recover unknown “slopes” ﬂf, ..., Bt from

Yi = ma[u]< <ai,6§> where a; ~ N(0,14).
JE(r

Loss function:

1 m
f(:B17"'7BT _EZ

; — max (as, Bj)| -

Fallback algorithm: Polyak subgradient method.



Example: max-linear regression

Max-linear regression: recover unknown “slopes” ﬁf, ..., Bt from

Yi = m:ﬁ <ai,,6'§> where a; ~ N(0,14).
JE(r
Loss function:
1 m
yeeeyPr) = — i — Max (Aq, Pj)] -
FBrseesBr) = 2> |ys = max (s, Bj)

i=1

Fallback algorithm: Polyak subgradient method.
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From projection problem to linear system:

argmin {||z — zx[|* | f(y:) + (vi,x —yi) = 0}

= argmin {||z — zx||* | (vi, & — @) = (vi, yi — 2x) = f(y:)}
= argmin {[[z* | (vi, 2) = (vi, yi — xx) — f(y:)}

= argmin {||2|* | Az + [f(y:) + (vi, 2 — y:)], = 0}

Least-norm solution of Az +b=0: z = —A'b.
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