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What is computed tomography?

Setup: measurements {y; };~, of object X, € 02
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What is computed tomography?

Setup: measurements {y;}, of object X, € Q.

Goal: recover X, € R™*™.
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Computed tomography: measurement model

Model: attenuation of beam over X-ray spectrum.

yi = /E Styesp (—p / Fu)du) dt (1)
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Computed tomography: measurement model

Model: attenuation of beam over X-ray spectrum.
Yi = / S(t) exp ( — ,u/ f(u)du) dt
E 4

Radon transform: collection of all line integrals.

{Rf(s,e) = //Z 9 fu)du | s €R,0 € [o,w)}
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Computed tomography: measurement model

Model: attenuation of beam over X-ray spectrum.
Yi :/ S(t) exp ( —u/ f(“)dU)dt
E &

Radon transform: collection of all line integrals.

{Rf(s,e) = /45 ) flwdu | s eR,0 € [O,Tr)}

Object Sinogram

(1)
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Monochromatic beams and reconstruction
Simplified model: single X-ray intensity.

Yi = Sbase - €Xp(— (ai, z.), ), i=1,...,m. (2)
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Monochromatic beams and reconstruction
Simplified model: single X-ray intensity.
Yi = Sbase - €xp(— (@i, z,), ), i=1,...,m. (2)
X-ray intensity f(u) on n xn grid

design vectors (known)
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Monochromatic beams and reconstruction
Simplified model: single X-ray intensity.

Yi = Sbase - €Xp(— (ai, z.), ), i=1,...,m.
Assume a;, z, € R?, Spae = 1. How to recover z,?

FBP method: solve linear system Az, = —log(y).
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Monochromatic beams and reconstruction
Simplified model: single X-ray intensity.

Yi = Sbase - €xp(—(ai, z,), ), i=1,...,m. (2)
Assume a;, z, € R?, Spae = 1. How to recover z,?

FBP method: solve linear system Az, = —log(y).

- Issue: log-transform ill-conditioned; reconstruction artifacts as ||z

1.

- Insufficient for polychromatic CT measurements (“beam hardening”).

Alternatively: minimize loss directly on measurement space.

m

argmin L(z) := 1 Zp(e%a“z”;yi), P Ry xRy — Ry

z€EXCRY m i=1 penalty function

When is £ “easy” to optimize?

- How many measurements do we need? (sample complexity)
- How fast are “reasonable” methods? (iteration complexity)
- Is z, even reachable? (global convergence)
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Prior work: recovery with gradient descent

Natural starting point: let p(¢;y) := (§ — y)? (MSE loss).

m

&, = argmin 1 Z (yi — 6—<ai,z>+)2 .

m
TeX i—1

(3)
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Prior work: recovery with gradient descent

Natural starting point: let p(¢;y) := (§ — y)? (MSE loss).

m

. 1 e @
Tu :argmm%Z(yi—e (ais >+)2. 3)

TEX i—1

Algorithm: gradient descent with constant stepsize.

To = Od,

(GD)
Tpt1 = xk — - VL(zk), k=0,1,...

Guarantees: exponential sample and iteration complexity.

Theorem: (Fridovich-Keil et al., 2023)

Suppose a; ~iig N'(0, I;). Then, if m/a > etl=+ and n < e~czllzl

Jzrss —aa])® < (1 —e 1" Nz —a|)?, for k=0,1,...
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Prior work: recovery with gradient descent

Natural starting point: let p(¢;y) := (§ — y)? (MSE loss).

m

:i‘* = argmin % Z (yZ _ €—<ai,z>+)2 .

TeX i—1

Algorithm: gradient descent with constant stepsize.

Xo = Od,

Tyl =z — N - VL(Tk), k

0,1,...

(GD)

Guarantees: exponential sample and iteration complexity.

Question: is the exponential dependence on ||z.|| unavoidable?
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Recovery via nonsmooth optimization

Nonsmooth penalty: let p(9;y) := |g — y| (41 loss).

%, = argmin L(z Z ‘yl — e fanmhy |

zeX

Penalty p is non-differentiable. How to optimize?
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Recovery via nonsmooth optimization

Nonsmooth penalty: let p(9;y) := |g — y| (41 loss).

%, = argmin L(z Z ‘yl _ ety | (@)

zeX

Penalty p is non-differentiable. How to optimize?

Method: PolyakSGM

Here, OL(z) is the Clarke subdifferential:

OL(zx) := conv { lim VL(yi) | yi = x, VL exists at yz}
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Convergence of PolyakSGM

Theorem:! suppose that a convex function h satisfies:
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Convergence of PolyakSGM
Theorem:! suppose that a convex function h satisfies:
(Lipschitz) There is a constant L > 0 such that
\h(z) — h(Z)| < Lz — x|, forallz&ecR"
(Sharpness) There is a constant p > 0 such that

h(Z) — min h(z) > p - dist(z, argmin k), for all z € R*.

Then (PolyakSGM) generates iterates {zy }r>1 satisfying

2
zes1 — 2l < [z — | <1 — fﬁ) , forall keN.

“Effective” condition number k := L/u

LGoffin '77
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Convergence of PolyakSGM
Theorem:! suppose that a convex function h satisfies:
(Lipschitz) There is a constant L > 0 such that
\h(z) — h(Z)| < Lz — x|, forallz&ecR"
(Sharpness) There is a constant p > 0 such that

h(Z) — min h(z) > p - dist(z, argmin k), for all z € R*.

Then (PolyakSGM) generates iterates {zy }r>1 satisfying

2
[Trt1 — za||” < ok — | <1 — fﬁ) , forall keN.

Caveats for our loss:
Sharpness nontrivial to verify directly for L.

Proof relies on convexity of the loss function.

LGoffin '77
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Computed tomography: loss function properties

1 S —(a;,x
Lle)i= o>y — e
1=1
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Computed tomography: loss function properties

1 & o
L(x) = m Z lyi —e <a“m*>+’ .
i=1

Proposition: (C. & Willett, 2024)

Suppose a; ~id N(0, Iz) and that m/a > ||z.||*. Then L(z) satisfies

min (v, 2 — 2.)
vEIL(x) ||£E—$*|| ~ ||$*||27

Vo € B(0,3]|z.]]) \ {0} (Aiming)
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Computed tomography: loss function properties

1 & o
L(x) = m Z lyi —e <a“’”*>+’ .
i=1

Proposition: (C. & Willett, 2024)

Suppose a; ~id N(0, Iz) and that m/a > ||z.||*. Then L(z) satisfies

min (v, 2 — 2.)
vEIL(x) ||£E—$*|| ~ ||Qj*||2’

Vo € B(0,3]|z.]]) \ {0} (Aiming)

¢ Implication: convergence from any zo € B(0,3||z.||) (for small 7).
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Loss function properties: Aiming implies decrease
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Loss function properties: Aiming implies decrease

(v, — T4)

L >pu, |Lx)—-LZ)|<L||lr—=z
B ey i |L(z) — L(@)| < L || [

2

L(l‘kz) Uk
vkl

i L(xk)? 2775(1’1;) (s Tk — )
oI flvwl

ﬁ\fvfjlz) (2 (vk, e — ) — L))

Zhr1 — @e]|* = ||z — 20 — 7

= ||z — @.|?

= ||z — @* —
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Loss function properties: Aiming implies decrease

(v, — T4)

min ~——* >pu, |L(x)—L(EZ)| < Ll|z—=z
i SIS o 0w - £@)] < Lo - al

L(x 2
Zhr1 — ze]|* = ||k — 2o *ﬁH( ‘T)Uk
Vi
L nL
= ok — z|)® + 7 (we)® ML () (U, Tk — )
2
T
nL(xk _
=l = . = TS 2 ok, = ) — 7L ()
k
nL(xk) - ||z — x a
< llow — ) — PEL )HW”HQ (o0~ 1)
k
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Loss function properties: Aiming implies decrease

. v, xr —XT _ _
Telgg(lf) ﬁ >p, |L(x)—L(z) < L|z—z|
£ 2
Zhr1 — @e]|* = ||z — 20 — 7 H (xﬁ)vk
Vi
L(x nL(x
= [lax — 2o |® + 72 (ze)” Pt ’;) vk, Tl — Ty
[[oe|? [lvg]]
nL(x _
= fon — a2 = TEEE (9 0y ) — L))
llok ]l
< low —af? - PR Nz — 2l 5
[l ||

Takeaway: any 7] < 21/ gives decrease (how much?)
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Loss function properties: Aiming implies (local) sharp growth

Theorem:? suppose L satisfies (Aiming) on B(0; 3 ||z]|). Then

L(z) — Lo > p-min{||z|, ||z — z«||}, forall z € B(w*; H:c*H)

?“Solvability Lemma”; see (Clarke, 1990).
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?“Solvability Lemma”; see (Clarke, 1990).
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- Our theory shows this for the particular case zg = 0.
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Loss function properties: Aiming implies (local) sharp growth

Theorem:? suppose L satisfies (Aiming) on B(0; 3 ||z]|). Then

£(@) = L. > p-min{|z], o - 2]l for all @ € Bl .|| ).

?“Solvability Lemma”; see (Clarke, 1990).

Fast local convergence: if “close enough”, can readily deduce

nL(x Th — Ty _
R ek~ 2l o, op)
flvwl

p(2p — 7L
< low — |- (1 _ (H%HQ )) .

Suffices to prove ||| = Q(1) (since x) — x4, possibly slowly)
- Our theory shows this for the particular case zg = 0.

Thsr — 2ol < |z — 2a|)* —

Final result: initial “slow” phase (until ||zx — .|| < 3 ||lz.]|).
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Algorithm behavior: high-level sketch

- -~

- === B[z
~
~
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Overview of theoretical results

Method Iterations Samples Reference

PolyakSGM O (|lz.|°log (121))  O(||z.||* - d) arXiv:2407.12984
c1||lzx ||z || ec2llzxl X

GD O (etll=+log (I2=1)) O ( N d) arXiv:2310.03956

Table: Iteration and sample complexity of iterative reconstruction methods.

Takeaway: exponential improvements in both metrics.
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Question 1: is the algorithm fast?

Oversampling: m = 4d

Numerics

Oversampling: m = 8d

10° ‘ ‘ ‘ ‘ 10° ‘ ‘ : :
o, ——d =256
-, : —d=512
e, > d=1024
—4 T —4 —d= 4 il
10 < 10 . — PolyaksGM
= = v“"\ --- GD (optimized 7)
8 Y o
I 1078 I 1078 KN 1
= e %
£ g S
= ——d =256 - XN
|| —d=sn2 b N
1077 — g =1024 10 1
— PolyaksGM NN
-=-- GD (optimized 1) RN
10-16 T T ! ! 10-1 ! ! s s
200 400 600 800 1,000 100 200 300 400 500
Iteration k Iteration k
Setup: Gaussian measurements, ||z.|| = 1, 7 = 1 (no stepsize scaling).
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Numerics

Question 2(a): how “loose” are the stepsize bounds? (1 and 7)

Gaussian ensemble RWHT ensemble

2()
:\\ B _ 9 lfel |
= el = Tteell
| 92| e A TN -
& — [l =1 & — =1
- — = - — =l =2
A=l =1 g3 || —llall =4 Y
273 |-| — PolyakSGM B —— PolyakSGM
---GD ---GD
T | | | T | | |
0 1,000 2,000 3,000 4,000 0 1,000 2,000 3,000 4,000

Iteration k Iteration k

Setup: Gaussian measurements, 7] x ﬁ n oc el
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Numerics

Question 2(b): is the algorithm stable?

Iterations to suboptimality € = 107°
—
(==
w

[ | =~ PolyakSGM b
|| —e—GD
- = - Budget
2 I I I !
102’6 24 2-2 20 22

Stepsize 7

Setup: Gaussian measurements, 10 random instances per 1 value.
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Numerics

Question 3: is the algorithm sample-efficient?

PolyakSGM GD
5 ) 1.00
& 4 4 0.75
o0 6 6
£ 8 8 .
B 10 10 0-50
=
312 12
£ 1 11 0.25
g
ST\ SR . 0.00
1.0 20 3.0 40 50 60 7.0 80 1.0 20 30 40 50 60 7.0 8.0
|zl llz.ll

Figure: Recovery probability (random instances). Tile color indicates probability.

Setup: Gaussian measurements, 25 instances per tile, threshold ¢ = 107>,
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Numerics

Question 4: does it work with “real” measurements?

(a) GD; PSNR = 31.77 (b) PolyakSGM; PSNR = 38.12 (c) Ground truth

Setup: Radon-type measurements (/a = 1/4); project to TV norm? ball:

X = Az | [lzlly <A}

2Rudin-Osher-Fatemi '92
16/17



Numerics

Question 5: can we accelerate it?

L T T T T T T T T
—®— SuperPolyak (npunae = 32) —®— SuperPolyak (npyae = 32)
10-3 —— SuperPolyak (Mpusare = 128) || 103 —#— SuperPolyak (1pusare = 128) |
—A— SuperPolyak (nyunare = 512) —A— SuperPolyak (fpumae = 512)
PolyakSGM PolyakSGM
. 1076 ", 1 . 107¢
[ .. -~ *~
| s | KN
— - = .
£100 N 1 £ 1070
= Y ~ .
~ ’V.
. AN
10712 ] 10712 .
10 1 Il - Il Il Il Il \7 10 1 Il Il Il Il
0 100 2000 300 400 500 600 700 0.1 0.2 0.3 0.4
Cumulative oracle calls Time (s)
Setup: back to Gaussian measurements (m = 4d)
SuperPolyak: method using multiple linearizations per step.®
3arXiv:2201.04611
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Thank youl!

& arXiv:2407.12984

@ vchariso.com

[m] 21 [m]

Ofr=—=
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