Nonlinear tomographic reconstruction via nonsmooth optimization

Vasilis Charisopoulos — Data Science Institute, UChicago

NITMB WIP Meeting - April 8, 2025

Setup: measurements $\{y_i\}_{i=1}^m$ of object $X_{\star} \in \Omega^2$.

Goal: recover $X_{\star} \in \mathbb{R}^{n \times n}$.

Model: attenuation of beam over X-ray spectrum.

$$y_i = \int_E S(t) \exp\left(-\mu \int_{\ell_i} f(u) du\right) dt \tag{1}$$

Model: attenuation of beam over X-ray spectrum.

$$y_i = \int_E S(t) \exp\left(-\mu \int_{\ell_i} f(u) du\right) dt \tag{1}$$

X-ray intensity at freq t

Model: attenuation of beam over X-ray spectrum.

$$y_i = \int_E S(t) \exp\Big(-\mu \int_{\ell_i} f(u) \mathrm{d}u \Big) \mathrm{d}t \tag{1}$$
 X-ray intensity at freq t \int Travel path of i^{th} beam

Model: attenuation of beam over X-ray spectrum.

Model: attenuation of beam over X-ray spectrum.

$$y_i = \int_E S(t) \exp\left(-\mu \int_{\ell_i} f(u) du\right) dt \tag{1}$$

Radon transform: collection of all line integrals.

$$\left\{ \mathcal{R}f(s,\theta) := \int_{\ell_{s,\theta}} f(u) \mathrm{d}u \mid s \in \mathbb{R}, \theta \in [0,\pi) \right\}$$

Model: attenuation of beam over X-ray spectrum.

$$y_i = \int_E S(t) \exp\left(-\mu \int_{\ell_i} f(u) du\right) dt \tag{1}$$

Radon transform: collection of all line integrals.

$$\left\{ \mathcal{R}f(s,\theta) := \int_{\ell_{s,\theta}} f(u) \mathrm{d}u \mid s \in \mathbb{R}, \theta \in [0,\pi) \right\}$$

$$y_i = S_{\text{base}} \cdot \exp(-\langle a_i, x_* \rangle_+), \quad i = 1, \dots, m.$$
 (2)

$$y_i = S_{\rm base} \cdot \exp(-\left\langle a_i, x_\star \right\rangle_+), \quad i=1,\ldots,m. \tag{2}$$
 X-ray intensity —

$$y_i = S_{\mathsf{base}} \cdot \exp(-\langle a_i, x_\star \rangle_+), \quad i = 1, \dots, m. \tag{2}$$
 X-ray intensity — design vectors (known)

Simplified model: single X-ray intensity.

$$y_i = S_{\text{base}} \cdot \exp(-\langle a_i, x_* \rangle_+), \quad i = 1, \dots, m.$$
 (2)

Assume $a_i, x_{\star} \in \mathbb{R}^d$, $S_{\text{base}} = 1$. How to recover x_{\star} ?

Simplified model: single X-ray intensity.

$$y_i = S_{\text{base}} \cdot \exp(-\langle a_i, x_* \rangle_+), \quad i = 1, \dots, m.$$
 (2)

Assume $a_i, x_{\star} \in \mathbb{R}^d$, $S_{\text{base}} = 1$. How to recover x_{\star} ?

• **FBP** method: solve linear system $Ax_{\star} = -\log(y)$.

Simplified model: single X-ray intensity.

$$y_i = S_{\text{base}} \cdot \exp(-\langle a_i, x_* \rangle_+), \quad i = 1, \dots, m.$$
 (2)

Assume $a_i, x_\star \in \mathbb{R}^d$, $S_{\text{base}} = 1$. How to recover x_\star ?

- **FBP** method: solve linear system $Ax_{\star} = -\log(y)$.
 - **Issue**: log-transform ill-conditioned; reconstruction artifacts as $||x_{\star}|| \uparrow$.
 - Insufficient for polychromatic CT measurements ("beam hardening").

Simplified model: single X-ray intensity.

$$y_i = S_{\text{base}} \cdot \exp(-\langle a_i, x_* \rangle_+), \quad i = 1, \dots, m.$$
 (2)

Assume $a_i, x_{\star} \in \mathbb{R}^d$, $S_{\text{base}} = 1$. How to recover x_{\star} ?

- **FBP** method: solve linear system $Ax_{\star} = -\log(y)$.
 - **Issue**: log-transform ill-conditioned; reconstruction artifacts as $||x_{\star}|| \uparrow$.
 - Insufficient for polychromatic CT measurements ("beam hardening").
- Alternatively: minimize loss directly on measurement space.

$$\underset{x \in \mathcal{X} \subset \mathbb{R}^d}{\operatorname{argmin}} \, \mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^m \rho(e^{-\langle a_i, x \rangle_+}; y_i), \qquad \underset{\text{penalty function}}{\rho} : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+.$$

Simplified model: single X-ray intensity.

$$y_i = S_{\text{base}} \cdot \exp(-\langle a_i, x_* \rangle_+), \quad i = 1, \dots, m.$$
 (2)

Assume $a_i, x_{\star} \in \mathbb{R}^d$, $S_{\text{base}} = 1$. How to recover x_{\star} ?

- **FBP** method: solve linear system $Ax_{\star} = -\log(y)$.
 - Issue: log-transform ill-conditioned; reconstruction artifacts as $||x_{\star}|| \uparrow$.
 - Insufficient for polychromatic CT measurements ("beam hardening").
- Alternatively: minimize loss directly on measurement space.

$$\underset{x \in \mathcal{X} \subset \mathbb{R}^d}{\operatorname{argmin}} \, \mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^m \rho(e^{-\langle a_i, x \rangle_+}; y_i), \qquad \underset{\text{penalty function}}{\rho} : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+.$$

- When is L "easy" to optimize?
 - How many measurements do we need?

- How fast are "reasonable" methods?

- Is x_{\star} even reachable?

(sample complexity)

(iteration complexity)

(global convergence)

Natural starting point: let $\rho(\hat{y}; y) := (\hat{y} - y)^2$ (MSE loss).

$$\hat{x}_{\star} = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left(y_i - e^{-\langle a_i, x \rangle_+} \right)^2. \tag{3}$$

Natural starting point: let $\rho(\hat{y}; y) := (\hat{y} - y)^2$ (MSE loss).

$$\hat{x}_{\star} = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left(y_i - e^{-\langle a_i, x \rangle_+} \right)^2. \tag{3}$$

Algorithm: gradient descent with constant stepsize.

$$x_0 := \mathbf{0}_d,$$

$$x_{k+1} := x_k - \eta \cdot \nabla \mathcal{L}(x_k), \quad k = 0, 1, \dots$$
 (GD)

Natural starting point: let $\rho(\hat{y}; y) := (\hat{y} - y)^2$ (MSE loss).

$$\hat{x}_{\star} = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left(y_i - e^{-\langle a_i, x \rangle_+} \right)^2. \tag{3}$$

Algorithm: gradient descent with constant stepsize.

$$x_0 := \mathbf{0}_d,$$
 $x_{k+1} := x_k - \eta \cdot \nabla \mathcal{L}(x_k), \quad k = 0, 1, \dots$ (GD)

Guarantees: exponential sample and iteration complexity.

Natural starting point: let $\rho(\hat{y}; y) := (\hat{y} - y)^2$ (MSE loss).

$$\hat{x}_{\star} = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left(y_i - e^{-\langle a_i, x \rangle_+} \right)^2. \tag{3}$$

Algorithm: gradient descent with constant stepsize.

$$x_0 := \mathbf{0}_d,$$

$$x_{k+1} := x_k - \eta \cdot \nabla \mathcal{L}(x_k), \quad k = 0, 1, \dots$$
 (GD)

Guarantees: exponential sample and iteration complexity.

Theorem: (Fridovich-Keil et al., 2023)

Suppose
$$a_i \sim_{\text{iid}} \mathcal{N}(0, I_d)$$
. Then, if $m/d \gtrsim e^{c_1 \|x_\star\|}$ and $\eta \lesssim e^{-c_2 \|x_\star\|}$,

$$||x_{k+1} - x_{\star}||^2 \le (1 - e^{-c_3||x_{\star}||}) ||x_k - x_{\star}||^2$$
, for $k = 0, 1, ...$

Natural starting point: let $\rho(\hat{y}; y) := (\hat{y} - y)^2$ (MSE loss).

$$\hat{x}_{\star} = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left(y_i - e^{-\langle a_i, x \rangle_+} \right)^2.$$
 (3)

Algorithm: gradient descent with constant stepsize.

$$x_0 := \mathbf{0}_d,$$

$$x_{k+1} := x_k - \eta \cdot \nabla \mathcal{L}(x_k), \quad k = 0, 1, \dots$$
 (GD)

Guarantees: exponential sample and iteration complexity.

Question: is the exponential dependence on $||x_{\star}||$ unavoidable?

Nonsmooth penalty: let $\rho(\hat{y}; y) := |\hat{y} - y|$ (ℓ_1 loss).

$$\hat{x}_{\star} = \operatorname*{argmin}_{x \in \mathcal{X}} \mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^{m} \left| y_i - e^{-\langle a_i, x \rangle_+} \right|. \tag{4}$$

Penalty ρ is non-differentiable. How to optimize?

Nonsmooth penalty: let $\rho(\hat{y}; y) := |\hat{y} - y|$ (ℓ_1 loss).

$$\hat{x}_{\star} = \operatorname*{argmin}_{x \in \mathcal{X}} \mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^{m} \left| y_i - e^{-\langle a_i, x \rangle_+} \right|. \tag{4}$$

Penalty ρ is non-differentiable. How to optimize?

Method: PolyakSGM
$$x_0 := \mathbf{0}_d,$$
 $x_{k+1} := x_k - ar{\eta} \cdot \left. \frac{\mathcal{L}(x_k)}{\|v_k\|} \right. \left. \frac{v_k}{\|v_k\|}, \quad v_k \in \partial \mathcal{L}(x_k)$

Nonsmooth penalty: let $\rho(\hat{y}; y) := |\hat{y} - y|$ (ℓ_1 loss).

$$\hat{x}_{\star} = \operatorname*{argmin}_{x \in \mathcal{X}} \mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^{m} \left| y_i - e^{-\langle a_i, x \rangle_+} \right|. \tag{4}$$

Penalty ρ is non-differentiable. How to optimize?

Nonsmooth penalty: let $\rho(\hat{y}; y) := |\hat{y} - y|$ (ℓ_1 loss).

$$\hat{x}_{\star} = \operatorname*{argmin}_{x \in \mathcal{X}} \mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^{m} \left| y_i - e^{-\langle a_i, x \rangle_+} \right|. \tag{4}$$

Penalty ρ is non-differentiable. How to optimize?

Method: PolyakSGM
$$x_0 := \mathbf{0}_d,$$
 $x_{k+1} := x_k - ar{\eta} \cdot egin{array}{c} \mathcal{L}(x_k) \ & \|v_k\| \end{array}, \quad v_k \in \partial \mathcal{L}(x_k)$

Here, $\partial \mathcal{L}(x)$ is the *Clarke subdifferential*:

$$\partial \mathcal{L}(x) := \operatorname{conv} \left\{ \lim_{i \to \infty} \nabla \mathcal{L}(y_i) \mid y_i \to x, \ \nabla \mathcal{L} \text{ exists at } y_i \right\}$$

Theorem: 1 suppose that a *convex* function h satisfies:

¹Goffin '77

Theorem: 1 suppose that a *convex* function h satisfies:

(Lipschitz) There is a constant L>0 such that

$$|h(x) - h(\bar{x})| \le L ||x - \bar{x}||, \quad \text{for all } x, \bar{x} \in \mathbb{R}^d.$$

¹Goffin '77

Theorem: 1 suppose that a *convex* function h satisfies:

(**Lipschitz**) There is a constant L>0 such that

$$|h(x) - h(\bar{x})| \le L ||x - \bar{x}||, \text{ for all } x, \bar{x} \in \mathbb{R}^d.$$

(**Sharpness**) There is a constant $\mu > 0$ such that

$$h(\bar{x}) - \min_{x} h(x) \ge \mu \cdot \operatorname{dist}(\bar{x}, \operatorname{argmin} h), \quad \text{for all } \bar{x} \in \mathbb{R}^d.$$

¹Goffin '77

Theorem: 1 suppose that a *convex* function h satisfies:

(**Lipschitz**) There is a constant L>0 such that

$$|h(x) - h(\bar{x})| \le L ||x - \bar{x}||$$
, for all $x, \bar{x} \in \mathbb{R}^d$.

(**Sharpness**) There is a constant $\mu > 0$ such that

$$h(\bar{x}) - \min_{x} h(x) \geq \mu \cdot \operatorname{dist}(\bar{x}, \operatorname{argmin} h), \quad \text{ for all } \bar{x} \in \mathbb{R}^d.$$

Then (PolyakSGM) generates iterates $\{x_k\}_{k\geq 1}$ satisfying

$$\left\|x_{k+1}-x_{\star}\right\|^{2}\leq\left\|x_{k}-x_{\star}\right\|^{2}\left(1-\frac{\mu^{2}}{4L^{2}}\right),\quad\text{for all }k\in\mathbb{N}.$$

¹Goffin '77

Theorem: 1 suppose that a *convex* function h satisfies:

(**Lipschitz**) There is a constant L>0 such that

$$|h(x) - h(\bar{x})| \le L ||x - \bar{x}||, \text{ for all } x, \bar{x} \in \mathbb{R}^d.$$

(**Sharpness**) There is a constant $\mu > 0$ such that

$$h(\bar{x}) - \min_{x} h(x) \geq \mu \cdot \operatorname{dist}(\bar{x}, \operatorname{argmin} h), \quad \text{for all } \bar{x} \in \mathbb{R}^d.$$

Then (PolyakSGM) generates iterates $\{x_k\}_{k\geq 1}$ satisfying

$$||x_{k+1} - x_{\star}||^2 \le ||x_k - x_{\star}||^2 \left(1 - \frac{\mu^2}{4L^2}\right), \quad \text{for all } k \in \mathbb{N}.$$

"Effective" condition number $\kappa := {^L/\mu}$

¹Goffin '77

Convergence of PolyakSGM

Theorem: 1 suppose that a *convex* function h satisfies:

(**Lipschitz**) There is a constant L > 0 such that

$$|h(x) - h(\bar{x})| \le L ||x - \bar{x}||, \text{ for all } x, \bar{x} \in \mathbb{R}^d.$$

(**Sharpness**) There is a constant $\mu > 0$ such that

$$h(\bar{x}) - \min_{x} h(x) \geq \mu \cdot \operatorname{dist}(\bar{x}, \operatorname{argmin} h), \quad \text{for all } \bar{x} \in \mathbb{R}^d.$$

Then (PolyakSGM) generates iterates $\{x_k\}_{k\geq 1}$ satisfying

$$\left\|x_{k+1}-x_{\star}\right\|^{2}\leq\left\|x_{k}-x_{\star}\right\|^{2}\left(1-\frac{\mu^{2}}{4L^{2}}\right),\quad\text{for all }k\in\mathbb{N}.$$

Caveats for our loss:

- Sharpness nontrivial to verify directly for \mathcal{L} .
- Proof relies on convexity of the loss function.

¹Goffin '77

$$\mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^{m} \left| y_i - e^{-\langle a_i, x_{\star} \rangle_+} \right|.$$

$$\mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^{m} \left| y_i - e^{-\langle a_i, x_{\star} \rangle_+} \right|.$$

Proposition: (C. & Willett, 2024)

Suppose $a_i \sim_{\text{iid}} \mathcal{N}(0, I_d)$ and that $m/d \gtrsim ||x_\star||^4$. Then $\mathcal{L}(x)$ satisfies

$$\min_{v \in \partial \mathcal{L}(x)} \frac{\left\langle v, x - x_\star \right\rangle}{\|x - x_\star\|} \gtrsim \frac{1}{\|x_\star\|^2}, \quad \forall x \in \mathcal{B}(0, 3 \, \|x_\star\|) \setminus \{\mathbf{0}\} \quad \text{(Aiming)}$$

$$\mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^{m} \left| y_i - e^{-\langle a_i, x_{\star} \rangle_+} \right|.$$

$$\mathcal{L}(x) := \frac{1}{m} \sum_{i=1}^{m} \left| y_i - e^{-\langle a_i, x_{\star} \rangle_+} \right|.$$

Proposition: (C. & Willett, 2024)

Suppose $a_i \sim_{\text{iid}} \mathcal{N}(0, I_d)$ and that $m/d \gtrsim ||x_\star||^4$. Then $\mathcal{L}(x)$ satisfies

$$\min_{v \in \partial \mathcal{L}(x)} \frac{\left\langle v, x - x_\star \right\rangle}{\|x - x_\star\|} \gtrsim \frac{1}{\|x_\star\|^2}, \quad \forall x \in \mathcal{B}(0, 3 \, \|x_\star\|) \setminus \{\mathbf{0}\} \quad \text{(Aiming)}$$

• Implication: convergence from any $x_0 \in \mathcal{B}(0, 3 ||x_{\star}||)$ (for small $\bar{\eta}$).

$$\min_{v \in \partial \mathcal{L}(x)} \frac{\langle v, x - x_{\star} \rangle}{\|x - x_{\star}\|} \ge \mu, \quad |\mathcal{L}(x) - \mathcal{L}(\bar{x})| \le L \|x - \bar{x}\|$$

$$\min_{v \in \partial \mathcal{L}(x)} \frac{\langle v, x - x_{\star} \rangle}{\|x - x_{\star}\|} \ge \mu, \quad |\mathcal{L}(x) - \mathcal{L}(\bar{x})| \le L \|x - \bar{x}\|$$

$$\|x_{k+1} - x_{\star}\|^2 = \left\|x_k - x_{\star} - \bar{\eta} \frac{\mathcal{L}(x_k)}{\|v_k\|^2} v_k\right\|^2$$

$$\min_{v \in \partial \mathcal{L}(x)} \frac{\langle v, x - x_{\star} \rangle}{\|x - x_{\star}\|} \ge \mu, \quad |\mathcal{L}(x) - \mathcal{L}(\bar{x})| \le L \|x - \bar{x}\|$$

$$||x_{k+1} - x_{\star}||^{2} = ||x_{k} - x_{\star} - \bar{\eta} \frac{\mathcal{L}(x_{k})}{||v_{k}||^{2}} v_{k}||^{2}$$

$$= ||x_{k} - x_{\star}||^{2} + \bar{\eta}^{2} \frac{\mathcal{L}(x_{k})^{2}}{||v_{k}||^{2}} - 2 \frac{\bar{\eta} \mathcal{L}(x_{k})}{||v_{k}||^{2}} \cdot \langle v_{k}, x_{k} - x_{\star} \rangle$$

$$\min_{v \in \partial \mathcal{L}(x)} \frac{\langle v, x - x_{\star} \rangle}{\|x - x_{\star}\|} \ge \mu, \quad |\mathcal{L}(x) - \mathcal{L}(\bar{x})| \le L \|x - \bar{x}\|$$

$$\|x_{k+1} - x_{\star}\|^{2} = \left\|x_{k} - x_{\star} - \bar{\eta} \frac{\mathcal{L}(x_{k})}{\|v_{k}\|^{2}} v_{k}\right\|^{2}$$

$$= \|x_{k} - x_{\star}\|^{2} + \bar{\eta}^{2} \frac{\mathcal{L}(x_{k})^{2}}{\|v_{k}\|^{2}} - 2 \frac{\bar{\eta} \mathcal{L}(x_{k})}{\|v_{k}\|^{2}} \cdot \langle v_{k}, x_{k} - x_{\star} \rangle$$

$$= \|x_{k} - x_{\star}\|^{2} - \frac{\bar{\eta} \mathcal{L}(x_{k})}{\|v_{k}\|^{2}} \left(2 \langle v_{k}, x_{k} - x_{\star} \rangle - \bar{\eta} \mathcal{L}(x_{k})\right)$$

$$\min_{v \in \partial \mathcal{L}(x)} \frac{\langle v, x - x_{\star} \rangle}{\|x - x_{\star}\|} \ge \mu, \quad |\mathcal{L}(x) - \mathcal{L}(\bar{x})| \le L \|x - \bar{x}\|$$

$$\|x_{k+1} - x_{\star}\|^{2} = \left\|x_{k} - x_{\star} - \bar{\eta} \frac{\mathcal{L}(x_{k})}{\|v_{k}\|^{2}} v_{k}\right\|^{2}$$

$$= \|x_{k} - x_{\star}\|^{2} + \bar{\eta}^{2} \frac{\mathcal{L}(x_{k})^{2}}{\|v_{k}\|^{2}} - 2 \frac{\bar{\eta} \mathcal{L}(x_{k})}{\|v_{k}\|^{2}} \cdot \langle v_{k}, x_{k} - x_{\star} \rangle$$

$$= \|x_{k} - x_{\star}\|^{2} - \frac{\bar{\eta} \mathcal{L}(x_{k})}{\|v_{k}\|^{2}} \left(2 \langle v_{k}, x_{k} - x_{\star} \rangle - \bar{\eta} \mathcal{L}(x_{k})\right)$$

$$\le \|x_{k} - x_{\star}\|^{2} - \frac{\bar{\eta} \mathcal{L}(x_{k}) \cdot \|x_{k} - x_{\star}\|}{\|v_{k}\|^{2}} \left(2\mu - \bar{\eta}L\right)$$

$$\min_{v \in \partial \mathcal{L}(x)} \frac{\langle v, x - x_{\star} \rangle}{\|x - x_{\star}\|} \ge \mu, \quad |\mathcal{L}(x) - \mathcal{L}(\bar{x})| \le L \|x - \bar{x}\|$$

$$\|x_{k+1} - x_{\star}\|^{2} = \left\|x_{k} - x_{\star} - \bar{\eta} \frac{\mathcal{L}(x_{k})}{\|v_{k}\|^{2}} v_{k}\right\|^{2}$$

$$= \|x_{k} - x_{\star}\|^{2} + \bar{\eta}^{2} \frac{\mathcal{L}(x_{k})^{2}}{\|v_{k}\|^{2}} - 2 \frac{\bar{\eta} \mathcal{L}(x_{k})}{\|v_{k}\|^{2}} \cdot \langle v_{k}, x_{k} - x_{\star} \rangle$$

$$= \|x_{k} - x_{\star}\|^{2} - \frac{\bar{\eta} \mathcal{L}(x_{k})}{\|v_{k}\|^{2}} \left(2 \langle v_{k}, x_{k} - x_{\star} \rangle - \bar{\eta} \mathcal{L}(x_{k})\right)$$

$$\le \|x_{k} - x_{\star}\|^{2} - \frac{\bar{\eta} \mathcal{L}(x_{k}) \cdot \|x_{k} - x_{\star}\|}{\|v_{k}\|^{2}} \left(2\mu - \bar{\eta}L\right)$$

Takeaway: any $\bar{\eta} < 2\mu/L$ gives decrease (how much?)

Theorem: a suppose $\mathcal L$ satisfies (Aiming) on $\mathcal B(0;3\,\|x_\star\|)$. Then

$$\mathcal{L}(x) - \mathcal{L}_{\star} \ge \mu \cdot \min\{\|x\|, \|x - x_{\star}\|\}, \quad \text{for all } x \in \mathcal{B}\left(x_{\star}; \|x_{\star}\|\right).$$

^a"Solvability Lemma"; see (Clarke, 1990).

Theorem:^a suppose \mathcal{L} satisfies (Aiming) on $\mathcal{B}(0; 3 \|x_{\star}\|)$. Then

$$\mathcal{L}(x) - \mathcal{L}_{\star} \ge \mu \cdot \min\{\|x\|, \|x - x_{\star}\|\}, \quad \text{for all } x \in \mathcal{B}\left(x_{\star}; \|x_{\star}\|\right).$$

^a"Solvability Lemma"; see (Clarke, 1990).

• Fast local convergence: if "close enough", can readily deduce

$$||x_{k+1} - x_{\star}||^{2} \leq ||x_{k} - x_{\star}||^{2} - \frac{\bar{\eta}\mathcal{L}(x_{k}) ||x_{k} - x_{\star}||}{||v_{k}||^{2}} (2\mu - \bar{\eta}L)$$

$$\leq ||x_{k} - x_{\star}||^{2} \cdot \left(1 - \frac{\mu \bar{\eta}(2\mu - \bar{\eta}L)}{||v_{k}||^{2}}\right).$$

Theorem:^a suppose \mathcal{L} satisfies (Aiming) on $\mathcal{B}(0; 3 \|x_{\star}\|)$. Then

$$\mathcal{L}(x) - \mathcal{L}_{\star} \ge \mu \cdot \min\{\|x\|, \|x - x_{\star}\|\}, \quad \text{for all } x \in \mathcal{B}(x_{\star}; \|x_{\star}\|).$$

^a"Solvability Lemma"; see (Clarke, 1990).

• Fast local convergence: if "close enough", can readily deduce

$$||x_{k+1} - x_{\star}||^{2} \leq ||x_{k} - x_{\star}||^{2} - \frac{\bar{\eta}\mathcal{L}(x_{k}) ||x_{k} - x_{\star}||}{||v_{k}||^{2}} (2\mu - \bar{\eta}L)$$

$$\leq ||x_{k} - x_{\star}||^{2} \cdot \left(1 - \frac{\mu \bar{\eta}(2\mu - \bar{\eta}L)}{||v_{k}||^{2}}\right).$$

- Suffices to prove $||x_k|| = \Omega(1)$ (since $x_k \to x_\star$, possibly slowly)
 - Our theory shows this for the particular case $x_0 = \mathbf{0}$.

Theorem:^a suppose \mathcal{L} satisfies (Aiming) on $\mathcal{B}(0; 3 \|x_{\star}\|)$. Then

$$\mathcal{L}(x) - \mathcal{L}_{\star} \ge \mu \cdot \min\{\|x\|, \|x - x_{\star}\|\}, \quad \text{for all } x \in \mathcal{B}(x_{\star}; \|x_{\star}\|).$$

^a"Solvability Lemma"; see (Clarke, 1990).

• Fast local convergence: if "close enough", can readily deduce

$$||x_{k+1} - x_{\star}||^{2} \leq ||x_{k} - x_{\star}||^{2} - \frac{\bar{\eta}\mathcal{L}(x_{k}) ||x_{k} - x_{\star}||}{||v_{k}||^{2}} (2\mu - \bar{\eta}L)$$

$$\leq ||x_{k} - x_{\star}||^{2} \cdot \left(1 - \frac{\mu \bar{\eta}(2\mu - \bar{\eta}L)}{||v_{k}||^{2}}\right).$$

- Suffices to prove $||x_k|| = \Omega(1)$ (since $x_k \to x_\star$, possibly slowly)
 - Our theory shows this for the particular case $x_0 = \mathbf{0}$.
- Final result: initial "slow" phase (until $||x_k x_\star|| \le \frac{1}{2} ||x_\star||$).

Algorithm behavior: high-level sketch

Overview of theoretical results

Method	Iterations	Samples	Reference
PolyakSGM	$O\left(\ x_{\star}\ ^{6}\log\left(\frac{\ x_{\star}\ }{\varepsilon}\right)\right)$	$O(\ x_{\star}\ ^4 \cdot d)$	arXiv:2407.12984
GD	$O\left(e^{c_1\ x_\star\ }\log\left(\frac{\ x_\star\ }{\varepsilon}\right)\right)$	$O\left(\frac{e^{c_2\ x_\star\ }}{\ x_\star\ ^2} \cdot d\right)$	ar%iv:2310.03956

Table: Iteration and sample complexity of iterative reconstruction methods.

Takeaway: exponential improvements in both metrics.

Question 1: is the algorithm fast?

Setup: Gaussian measurements, $||x_{\star}|| = 1$, $\bar{\eta} = 1$ (no stepsize scaling).

Question 2(a): how "loose" are the stepsize bounds? $(\eta \text{ and } \bar{\eta})$

Setup: Gaussian measurements, $\bar{\eta} \propto \frac{1}{\|x_\star\|^2}$, $\eta \propto e^{-5\|x_\star\|}$.

Question 2(b): is the algorithm stable?

Setup: Gaussian measurements, 10 random instances per η value.

Question 3: is the algorithm sample-efficient?

Figure: Recovery probability (random instances). Tile color indicates probability.

Setup: Gaussian measurements, 25 instances per tile, threshold $\varepsilon = 10^{-5}$.

Question 4: does it work with "real" measurements?

Setup: Radon-type measurements (m/d = 1/4); project to TV norm² ball:

$$\mathcal{X} := \{ x \mid ||x||_{\mathsf{TV}} \le \lambda \}.$$

²Rudin-Osher-Fatemi '92

Question 5: can we accelerate it?

- **Setup**: back to Gaussian measurements (m = 4d)
- SuperPolyak: method using multiple linearizations per step.³

³arXiv:2201.04611

Thank you!

- **a**rXiv:2407.12984
- vchariso.com

