Multi-frequency progressive refinement for learned inverse scattering

Vasilis Charisopoulos (UChicago → UW ECE)

IFDS Workshop, August 2025

My amazing collaborators

Owen Melia

Olivia Tsang

Yuehaw Khoo

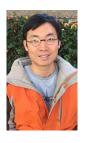
Jeremy Hoskins

Rebecca Willett

My amazing collaborators

Owen Melia

Olivia Tsang

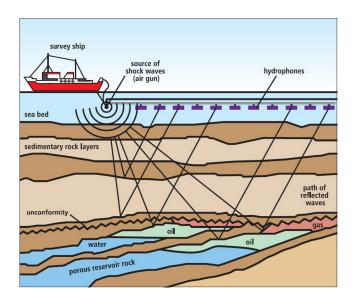


Yuehaw Khoo

Jeremy Hoskins

Rebecca Willett

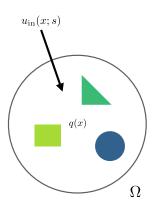
Wave scattering



Imaging setup: probing

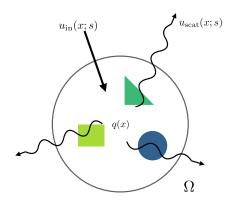
- Interested in scattering potential q(x), $x \in \Omega$
- Probe object using plane waves:
 - Traveling in direction $s \in \mathbb{S}$
 - Wavelength $\lambda \to \text{spatial frequency } k = \frac{2\pi}{\lambda}$
 - Constant wave speed outside Ω
- Incoming waves:

$$u_{\rm in}(x;s) = \exp(ik \cdot \langle s, x \rangle).$$



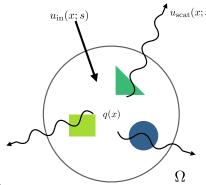
Imaging setup: scattering

- Interactions yield scattered wave $u_{\rm sc}(x;s)$
- Map $q\mapsto u_{\mathrm{sc}}(\cdot;s)$ is **nonlinear** in general!



Imaging setup: scattering

- Interactions yield scattered wave $u_{sc}(x;s)$
- Map $q\mapsto u_{\mathrm{sc}}(\cdot;s)$ is **nonlinear** in general!



Lippmann-Schwinger integral equation: for appropriate G_k ,

$$\mathbf{u_{sc}}(x;s) = k^2 \int_{\Omega} G_k(\|x - x'\|) q(x') \left(u_{in}(x';s) + \mathbf{u_{sc}}(x';s)\right) \mathrm{d}x'$$
Green's function

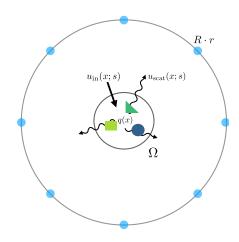
Imaging setup: measurements

- Receiver direction $r \in \mathbb{S}$
- Observe $u_{\rm sc}(\cdot;s)$ on ring of radius $R\gg 1$:

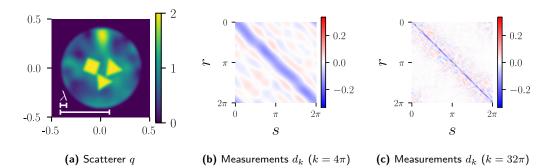
$$\mathcal{F}_k[q](r,s) = u_{\rm sc}(R \cdot r;s)$$

• Far-field data: collection of measurements

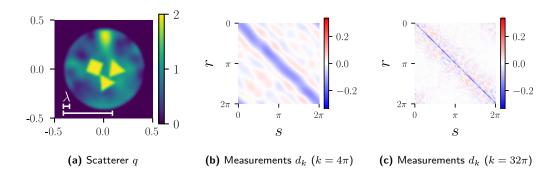
$$d_k:=\{\mathcal{F}_k[q](r,s)\}_{(r,s): \text{evenly spaced on }\mathbb{S}}\ ,$$
 over several spatial frequencies $k.$



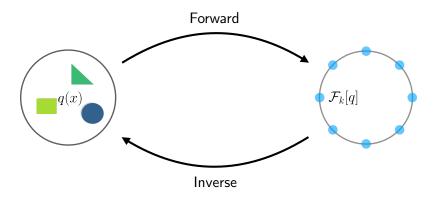
Imaging setup: measurements



Imaging setup: measurements



Goal: recover q from far-field data $\{d_k\}$.



Assumption: scattered wave depends *linearly* on scattering potential:

$$\mathcal{F}_k[q]pprox \mathcal{F}_k[\mathbf{0}] +
abla \mathcal{F}_k[\mathbf{0}]q \equiv F_kq.$$
 linear operator

Assumption: scattered wave depends *linearly* on scattering potential:

$$\mathcal{F}_k[q]pprox \mathcal{F}_k[\mathbf{0}] +
abla \mathcal{F}_k[\mathbf{0}]q \equiv F_kq.$$
 Linear operator

When is this approximation plausible?

$$u_{\rm sc}(x;s) = k^2 \int_{\Omega} G_k(\|x - x'\|) q(x') \left(u_{\rm in}(x';s) + u_{\rm sc}(x';s) \right) dx' \tag{1}$$

1. Low contrast: small values of q(x)

Assumption: scattered wave depends *linearly* on scattering potential:

$$\mathcal{F}_k[q]pprox \mathcal{F}_k[\mathbf{0}] +
abla \mathcal{F}_k[\mathbf{0}]q \equiv F_kq.$$
 Linear operator

When is this approximation plausible?

$$u_{\rm sc}(x;s) = k^2 \int_{\Omega} G_k(\|x - x'\|) q(x') \left(u_{\rm in}(x';s) + u_{\rm sc}(x';s) \right) dx' \tag{1}$$

- 1. Low contrast: small values of q(x)
- 2. Narrow spatial support: q(x) is zero for most $x \in \Omega$

Assumption: scattered wave depends *linearly* on scattering potential:

$$\mathcal{F}_k[q]pprox \mathcal{F}_k[\mathbf{0}] +
abla \mathcal{F}_k[\mathbf{0}]q \equiv F_kq.$$
 Linear operato

When is this approximation plausible?

$$u_{\rm sc}(x;s) = k^2 \int_{\Omega} G_k(\|x - x'\|) q(x') \left(u_{\rm in}(x';s) + u_{\rm sc}(x';s)\right) dx' \tag{1}$$

- 1. Low contrast: small values of q(x)
- 2. Narrow spatial support: q(x) is zero for most $x \in \Omega$
- 3. Low-frequency waves: small wavenumber k.

Assumption: scattered wave depends *linearly* on scattering potential:

$$\mathcal{F}_k[q]pprox \mathcal{F}_k[\mathbf{0}] +
abla \mathcal{F}_k[\mathbf{0}]q \equiv F_k q.$$
 Linear operato

$$\widehat{q} \approx (F_k^* F_k + \mu I)^{-1} F_k^* d_k. \tag{1}$$

Assumption: scattered wave depends *linearly* on scattering potential:

$$\mathcal{F}_k[q]pprox \mathcal{F}_k[\mathbf{0}] +
abla \mathcal{F}_k[\mathbf{0}]q \equiv F_kq.$$
 Linear operator

$$\widehat{q} \approx (F_k^* F_k + \mu I)^{-1} F_k^* d_k. \tag{1}$$
 Filtering operator (2D conv)

Assumption: scattered wave depends *linearly* on scattering potential:

$$\mathcal{F}_k[q]pprox \mathcal{F}_k[\mathbf{0}]+
abla \mathcal{F}_k[\mathbf{0}]q\equiv F_kq.$$
 Linear operator

$$\widehat{q} \approx (F_k^* F_k + \mu I)^{-1} F_k^* d_k. \tag{1}$$
 Filtering operator (2D conv) — Backprojection (1D conv)

Assumption: scattered wave depends *linearly* on scattering potential:

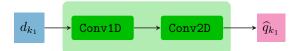
$$\mathcal{F}_k[q]pprox \mathcal{F}_k[\mathbf{0}] +
abla \mathcal{F}_k[\mathbf{0}]q \equiv F_kq.$$
 Linear operator

$$\widehat{q} \approx (F_k^* F_k + \mu I)^{-1} F_k^* d_k. \tag{1}$$
 Filtering operator (2D conv) — Backprojection (1D conv)

- ✓ Classical method, straightforward to implement.
- X Produces artifacts; struggles with high-contrast data.

Single-scattering using neural networks

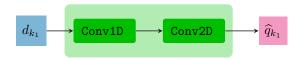
• Idea: replace filtering and backprojection with trainable 2D and 1D convolutions.¹



¹Fan & Ying, '22

Single-scattering using neural networks

• Idea: replace filtering and backprojection with trainable 2D and 1D convolutions.¹



- Related works:
 - SwitchNet²: encode via product of sparse structured matrices
 - Wide-band Butterfly Net^3 : represent hierarchical structure via butterfly factorization

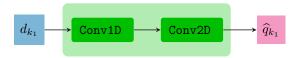
¹Fan & Ying, '22

²Khoo & Ying, '22

³Li et al., '22

Single-scattering using neural networks

Idea: replace filtering and backprojection with trainable 2D and 1D convolutions.¹



- Related works:
 - SwitchNet²: encode via product of sparse structured matrices
 - Wide-band Butterfly Net³: represent hierarchical structure via butterfly factorization
- Existing approaches struggle with high-contrast data / inhomogeneous backgrounds!

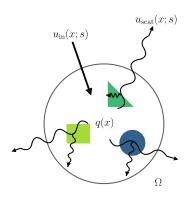
¹Fan & Ying, '22

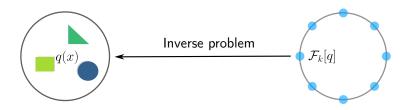
²Khoo & Ying, '22

³Li et al., '22

Multiple scattering: the nonlinear regime

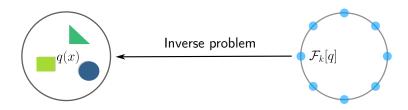
- Scattered wave itself interacts with object
- Map from q(x) to $u_{sc}(x;s)$ highly nonlinear
- Scatterer q has high contrast / wide spatial support
- Wavenumber k is high





• **Approach**: estimate q by solving optimization problem

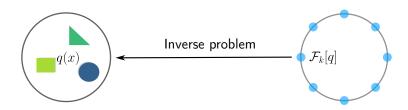
$$\widehat{q} = \operatorname*{argmin}_{q} \left\| \mathcal{F}_{k}[q] - d_{k} \right\|^{2}$$



• **Approach**: estimate *q* by solving optimization problem

$$\widehat{q} = \operatorname*{argmin}_{q} \left\| \mathcal{F}_{k}[q] - d_{k} \right\|^{2}$$

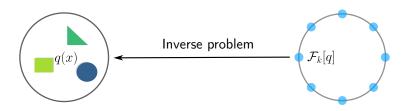
Nonconvex objective → spurious local minima!



• **Approach**: estimate q by solving optimization problem

$$\widehat{q} = \underset{q}{\operatorname{argmin}} \|\mathcal{F}_k[q] - d_k\|^2$$

- Nonconvex objective → spurious local minima!
- When can we avoid "bad" solutions?
 - When the initial guess \widehat{q}_0 is good;
 - When wavenumber k is low (since $\mathcal{F}_k[\cdot] \approx F_k$).



• **Approach**: estimate q by solving optimization problem

$$\widehat{q} = \operatorname*{argmin}_{q} \left\| \mathcal{F}_{k}[q] - d_{k} \right\|^{2}$$

- Nonconvex objective → spurious local minima!
- When can we avoid "bad" solutions?
 - When the initial guess \widehat{q}_0 is good;
 - When wavenumber k is low (since $\mathcal{F}_k[\cdot] \approx F_k$).
- Idea: use low-frequency estimates to initialize high-frequency solves.

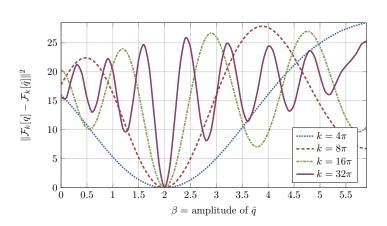
Illustration: optimization over family of Gaussians.

$$\widehat{q} = \operatorname*{argmin}_{q} \left\| \mathcal{F}_{k}[q] - d_{k} \right\|^{2}, \quad \text{where} \quad q(x) = \beta \exp \left(-\frac{\left\| x \right\|^{2}}{2\sigma^{2}} \right).$$

Illustration: optimization over family of Gaussians.

Illustration: optimization over family of Gaussians.

$$\widehat{q} = \operatorname*{argmin}_{q} \left\| \mathcal{F}_{k}[q] - d_{k} \right\|^{2}, \quad \text{where} \quad q(x) = \underset{q}{\beta} \exp \left(-\frac{\left\| x \right\|^{2}}{2\sigma^{2}} \right).$$
 unknown amplitude — known bandwidth



• "Warm-starting" from low-frequency solutions.4

$$\begin{cases} \widehat{q}_{k_{1}} \leftarrow \left(F_{k_{1}}^{*} F_{k_{1}} + \mu I\right)^{-1} F_{k_{1}}^{*} d_{k_{1}}.\\ \delta q_{k_{t}} \leftarrow \operatorname*{argmin}_{\delta q} \left\|d_{k_{t}} - \left(\mathcal{F}_{k_{t}}[\widehat{q}_{k_{t-1}}] + \nabla \mathcal{F}_{k_{t}}[\widehat{q}_{k_{t-1}}] \delta q\right)\right\|^{2}, \quad \widehat{q}_{k_{t}} = \widehat{q}_{k_{t-1}} + \delta q_{k_{t}}. \end{cases}$$

⁴Recursive linearization for Inverse Scattering, Chen '95

"Warm-starting" from low-frequency solutions.⁴

$$\begin{cases} \widehat{q}_{k_1} \leftarrow (F_{k_1}^* F_{k_1} + \mu I)^{-1} F_{k_1}^* d_{k_1}. \\ \delta q_{k_t} \leftarrow \underset{\delta q}{\operatorname{argmin}} \|d_{k_t} - (\mathcal{F}_{k_t}[\widehat{q}_{k_{t-1}}] + \nabla \mathcal{F}_{k_t}[\widehat{q}_{k_{t-1}}] \delta q)\|^2, \quad \widehat{q}_{k_t} = \widehat{q}_{k_{t-1}} + \delta q_{k_t}. \end{cases}$$

• Effective for high-resolution recovery in practice.

⁴Recursive linearization for Inverse Scattering, Chen '95

"Warm-starting" from low-frequency solutions.⁴

$$\begin{cases} \widehat{q}_{k_{1}} \leftarrow (F_{k_{1}}^{*} F_{k_{1}} + \mu I)^{-1} F_{k_{1}}^{*} d_{k_{1}}. \\ \delta q_{k_{t}} \leftarrow \underset{\delta q}{\operatorname{argmin}} \|d_{k_{t}} - (\mathcal{F}_{k_{t}}[\widehat{q}_{k_{t-1}}] + \nabla \mathcal{F}_{k_{t}}[\widehat{q}_{k_{t-1}}] \delta q)\|^{2}, \quad \widehat{q}_{k_{t}} = \widehat{q}_{k_{t-1}} + \delta q_{k_{t}}. \end{cases}$$

- Effective for high-resolution recovery in practice.
- Computationally expensive: multiple PDE solves for each k and direction r.

⁴Recursive linearization for Inverse Scattering, Chen '95

"Warm-starting" from low-frequency solutions.⁴

$$\begin{cases} \widehat{q}_{k_1} \leftarrow (F_{k_1}^* F_{k_1} + \mu I)^{-1} F_{k_1}^* d_{k_1}. \\ \delta q_{k_t} \leftarrow \underset{\delta q}{\operatorname{argmin}} \|d_{k_t} - (\mathcal{F}_{k_t}[\widehat{q}_{k_{t-1}}] + \nabla \mathcal{F}_{k_t}[\widehat{q}_{k_{t-1}}] \delta q)\|^2, \quad \widehat{q}_{k_t} = \widehat{q}_{k_{t-1}} + \delta q_{k_t}. \end{cases}$$

- **Effective for high-resolution recovery** in practice.
- **Computationally expensive**: multiple PDE solves for each k and direction r.
- Requires many measured frequencies:
 - Example: 277 frequencies and over 40 hours to recover single 192×192 image⁵.

⁵Borges et al. '17

⁴Recursive linearization for Inverse Scattering. Chen '95

"Warm-starting" from low-frequency solutions.⁴

$$\begin{cases} \widehat{q}_{k_1} \leftarrow (F_{k_1}^* F_{k_1} + \mu I)^{-1} F_{k_1}^* d_{k_1}. \\ \delta q_{k_t} \leftarrow \underset{\delta q}{\operatorname{argmin}} \|d_{k_t} - (\mathcal{F}_{k_t}[\widehat{q}_{k_{t-1}}] + \nabla \mathcal{F}_{k_t}[\widehat{q}_{k_{t-1}}] \delta q)\|^2, \quad \widehat{q}_{k_t} = \widehat{q}_{k_{t-1}} + \delta q_{k_t}. \end{cases}$$

- Effective for high-resolution recovery in practice.
- Computationally expensive: multiple PDE solves for each k and direction r.
- Requires many measured frequencies:
 - Example: 277 frequencies and over 40 hours to recover single 192×192 image⁵.

Ours: ML-based approach that emulates recursive linearization method.

⁵Borges et al. '17

14/

⁴Recursive linearization for Inverse Scattering. Chen '95

Our approach

Motivation: two key features of recursive linearization.

• **Progressive refinement**: maintain intermediate estimates of the scattering potential, progressively refine them with introduction of new data.

Our approach

Motivation: two key features of recursive linearization.

- **Progressive refinement**: maintain intermediate estimates of the scattering potential, progressively refine them with introduction of new data.
- Homotopy in frequency: iterative refinements form a homotopy from low to high frequency measurements. Updates at step t contain high-freq information relative to k_{t-1} .

Our approach

Motivation: two key features of recursive linearization.

- **Progressive refinement**: maintain intermediate estimates of the scattering potential, progressively refine them with introduction of new data.
- Homotopy in frequency: iterative refinements form a homotopy from low to high frequency measurements. Updates at step t contain high-freq information relative to k_{t-1} .

Proposal: Multi-Frequency Inverse Scattering Network (MFISNet).

- Composition of "refinement blocks" (trainable convolutional networks);
- **Key idea**: guide successive blocks to perform homotopy through frequency.

Progressive refinement: pseudocode

Algorithm Progressive refinement scheme

```
1: Input: multi-freq data \left\{d_{k_1},\ldots,d_{k_{N_f}}\right\}
2: \widehat{q}_{k_1}:=(F_{k_1}^*F_{k_1}+\mu I)^{-1}F_{k_1}^*d_{k_1} 
ightharpoonup Filtered backprojection
3: for t=2,\ldots,N_f do
4: \delta q:= \text{RefinementBlock}_{\theta_t}(\widehat{q}_{k_{t-1}},d_{k_t}) 
ightharpoonup Neural network
5: \widehat{q}_{k_t}:=\widehat{q}_{k_{t-1}}+\delta q
6: end for
7: return \widehat{q}_{k_{N_f}}
```

Progressive refinement: pseudocode

Algorithm Progressive refinement scheme

```
1: Input: multi-freq data \left\{d_{k_1},\ldots,d_{k_{N_f}}\right\}

2: \widehat{q}_{k_1}:=(F_{k_1}^*F_{k_1}+\mu I)^{-1}F_{k_1}^*d_{k_1} > Filtered backprojection

3: for t=2,\ldots,N_f do

4: \delta q:= \text{RefinementBlock}_{\theta_t}(\widehat{q}_{k_{t-1}},d_{k_t}) > Neural network

5: \widehat{q}_{k_t}:=\widehat{q}_{k_{t-1}}+\delta q

6: end for

7: return \widehat{q}_{k_{N_f}}
```

What makes a good RefinementBlock?

Implementation: refinement block

- Design goal: learn refinement step from data, avoid expensive PDE solves.
- Updates should contain high-frequency information.
- Residual connections to preserve low-frequency information.
- FYNet: neural net emulating FBP from (Fan & Ying, '22).

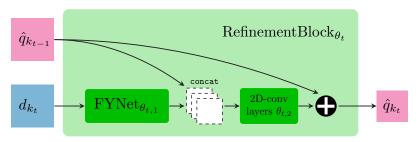


Figure: Proposed architecture; green blocks indicate trainable parameters.

Implementation: refinement block

- Design goal: learn refinement step from data, avoid expensive PDE solves.
- Updates should contain high-frequency information.
- Residual connections to preserve low-frequency information.
- FYNet: neural net emulating FBP from (Fan & Ying, '22).

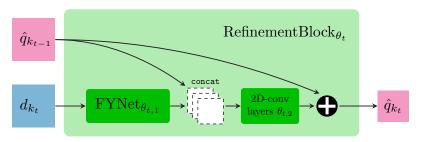
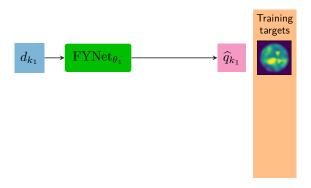


Figure: Proposed architecture; green blocks indicate trainable parameters.

How should we train the resulting network?

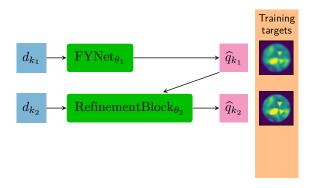
Implementation: homotopy through frequency

- Idea: pretrain blocks from coarser to finer scales.
- ullet Output of $t^{
 m th}$ block should match ${
 m LPF}_{k_t}(q)$, where LPF is appropriate low-pass filter.
- After pretraining, train blocks jointly so that $\widehat{q}_{k_{\text{final}}} \to q$.



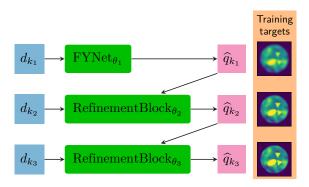
Implementation: homotopy through frequency

- Idea: pretrain blocks from coarser to finer scales.
- ullet Output of $t^{
 m th}$ block should match ${
 m LPF}_{k_t}(q)$, where LPF is appropriate low-pass filter.
- After pretraining, train blocks jointly so that $\widehat{q}_{k_{\text{final}}} \to q$.



Implementation: homotopy through frequency

- Idea: pretrain blocks from coarser to finer scales.
- ullet Output of $t^{\rm th}$ block should match ${\rm LPF}_{k_t}(q)$, where LPF is appropriate low-pass filter.
- ullet After pretraining, train blocks jointly so that $\widehat{q}_{k_{\mathrm{final}}} o q.$

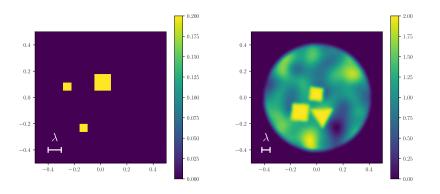


Experimental evaluation: new dataset of scatterers

- Wider spatial support; 5x 10x higher contrast $||q||_{\infty}$.
- Random selection of geometric shapes overlaid on smoothly-varying background
- Available from: https://doi.org/10.5281/zenodo.14514353 .

Experimental evaluation: new dataset of scatterers

- Wider spatial support; 5x 10x higher contrast $||q||_{\infty}$.
- · Random selection of geometric shapes overlaid on smoothly-varying background
- Available from: https://doi.org/10.5281/zenodo.14514353



(a) Sample from existing benchmark

(b) Sample from our dataset

Experimental evaluation: setup

Test with $N_f = 1, \dots, 5$ different frequencies.

- Use the highest N_f from $\{2\pi, 4\pi, 8\pi, 16\pi, 32\pi\}$ as k_1, \ldots, k_{N_f}
- Observe $n:=\left\lceil \frac{10000}{N_f} \right\rceil$ scattering potentials per frequency.
 - Selected to ensure the total number of measurements is independent of N_f .
- Compare the following methods:
 - FYNet: FBP-based method (Fan & Ying, '22)
 - Wide-band butterfly network (Li et al. '22)
 - Two "naive" multiscale baselines (MFISNet-Fused/Parallel)
 - The proposed method (MFISNet-Refinement).

Experimental evaluation: recovered images

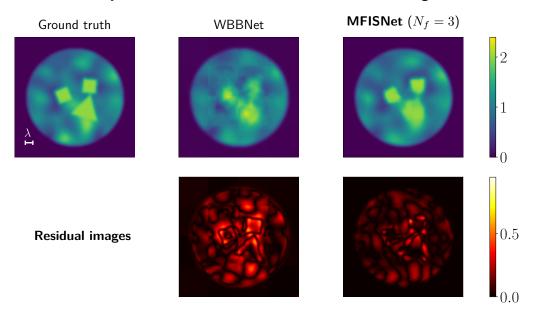


Figure: Random test sample, reconstructions and residuals

Experimental evaluation: performance comparison

N_f	$[k_1, k_2, \ldots]$	n	Method Name	Relative ℓ_2 Error
1	$[32\pi]$	10000	FYNet	0.261 ± 0.036
2	$[16\pi, 32\pi]$	5000	MFISNet-Fused MFISNet-Parallel MFISNet-Refinement (Ours)	0.177 ± 0.033 0.168 ± 0.029 0.154 ± 0.034
3	$[8\pi, 16\pi, 32\pi]$	3333	Wide-Band Butterfly Network MFISNet-Fused MFISNet-Parallel MFISNet-Refinement (Ours)	0.160 ± 0.037 0.130 ± 0.025 0.114 ± 0.021 0.098 ± 0.020
4	$[4\pi, 8\pi, 16\pi, 32\pi]$	2500	MFISNet-Fused MFISNet-Parallel MFISNet-Refinement (Ours)	0.105 ± 0.021 0.110 ± 0.021 0.086 ± 0.017
5	$[2\pi, 4\pi, 8\pi, 16\pi, 32\pi]$	2000	MFISNet-Fused MFISNet-Parallel MFISNet-Refinement (Ours)	0.115 ± 0.022 0.108 ± 0.021 0.084 ± 0.018

It's about time

Recursive linearization (2017):

- 277 forward model evaluations (serially) for each new test sample;
- reported over 40 hours to recover a single image (on 2017 computers);
- increasing frequency spacing affects convergence.

Our approach:

- 10000 forward model evaluations (in parallel) to generate dataset;
- ≈ 15 hours of compute to generate training samples on a **single** node;
- 1.5 hours to train model, $\leq 0.1 s$ to process each new image (for $N_f = 5$).

- Question 1: Is sequential pretraining necessary?
 - Alternative: train in one phase, incorporate intermediate reconstructions into loss.

$$\mathcal{L} := \|\hat{q}_{N_f} - q\|^2 + \sum_{t=1}^{N_f - 1} \gamma^{-t} \|\hat{q}_{k_t} - \mathtt{LPF}_{k_t}(q)\|^2, \quad \gamma \in (0, 1).$$

- Question 1: Is sequential pretraining necessary?
 - Alternative: train in one phase, incorporate intermediate reconstructions into loss.

$$\mathcal{L} := \|\hat{q}_{N_f} - q\|^2 + \sum_{t=1}^{N_f - 1} \gamma^{-t} \|\hat{q}_{k_t} - \text{LPF}_{k_t}(q)\|^2, \quad \gamma \in (0, 1).$$

- Question 2: Are intermediate reconstructions necessary?
 - Alternative: train in one phase using only the final reconstruction in the loss.

$$\mathcal{L} := \|\hat{q}_{N_f} - q\|^2.$$

Table: Ablation study

Training Method	$[k_1,k_2,]$	Relative L2 Error
MFISNet-Fused MFISNet-Parallel	$[2\pi, 4\pi, 8\pi, 16\pi, 32\pi]$ $[2\pi, 4\pi, 8\pi, 16\pi, 32\pi]$	$\begin{array}{c} 0.115 \pm 0.022 \\ 0.108 \pm 0.021 \end{array}$
No progressive refinement No sequential pre-training Our Method	$[2\pi, 4\pi, 8\pi, 16\pi, 32\pi]$ $[2\pi, 4\pi, 8\pi, 16\pi, 32\pi]$ $[2\pi, 4\pi, 8\pi, 16\pi, 32\pi]$	0.095 ± 0.018 0.090 ± 0.017 0.084 ± 0.018

Why are traditional methods so expensive?

Why are traditional methods so expensive?

Computational bottleneck: forward model + Jacobian evals during Gauss-Newton step.

$$\delta q \leftarrow (\nabla \mathcal{F}_k[\widehat{q}_{\mathsf{prev}}]^* \nabla \mathcal{F}_k[\widehat{q}_{\mathsf{prev}}] + \mu I)^{-1} \nabla \mathcal{F}_k[\widehat{q}_{\mathsf{prev}}]^* (\mathcal{F}_k[\widehat{q}_{\mathsf{prev}}] - d_k)$$

Why are traditional methods so expensive?

Computational bottleneck: forward model + Jacobian evals during Gauss-Newton step.

$$\delta q \leftarrow (\nabla \mathcal{F}_k[\widehat{q}_{\mathsf{prev}}]^* \nabla \mathcal{F}_k[\widehat{q}_{\mathsf{prev}}] + \mu I)^{-1} \nabla \mathcal{F}_k[\widehat{q}_{\mathsf{prev}}]^* (\mathcal{F}_k[\widehat{q}_{\mathsf{prev}}] - d_k)$$

Reason: evaluating $q\mapsto \mathcal{F}_k[q]$ and the JVP / VJP primitives

$$v \mapsto \nabla \mathcal{F}_k[q]v, \quad u \mapsto \nabla \mathcal{F}_k[q]^*u$$

require solving a nonlinear Helmholtz PDE.⁶

⁶Borges et al., 2017

25/30

Why are traditional methods so expensive?

Computational bottleneck: forward model + Jacobian evals during Gauss-Newton step.

$$\delta q \leftarrow (\nabla \mathcal{F}_k[\widehat{q}_{\mathsf{prev}}]^* \nabla \mathcal{F}_k[\widehat{q}_{\mathsf{prev}}] + \mu I)^{-1} \nabla \mathcal{F}_k[\widehat{q}_{\mathsf{prev}}]^* \left(\underline{\mathcal{F}_k[\widehat{q}_{\mathsf{prev}}]} - d_k \right)$$

Reason: evaluating $q \mapsto \mathcal{F}_k[q]$ and the JVP / VJP primitives

$$v \mapsto \nabla \mathcal{F}_k[q]v, \quad u \mapsto \nabla \mathcal{F}_k[q]^*u$$

require solving a nonlinear Helmholtz PDE.⁶

Can we take advantage of modern hardware accelerators (GPUs)?

⁶Borges et al., 2017

Sponsored content: jaxhps⁷

What is it?

- GPU-accelerated solver (written in Jax) for elliptic PDEs.
- Modern take on Hierarchical Poincare-Steklov solvers (HPS).

Key benefit: can autodiff through applications of forward model \mathcal{F}_k (+ speed).

⁷Melia, Fortunato, Hoskins & Willett, 2025

What to do with a GPU solver? Two options:

1. Integrate differentiable forward model with MFISNet-like solutions;

What to do with a GPU solver? Two options:

- 1. Integrate differentiable forward model with MFISNet-like solutions;
- 2. Accelerate classical methods (e.g., prox-gradient, Gauss-Newton).

What to do with a GPU solver? Two options:

- 1. Integrate differentiable forward model with MFISNet-like solutions;
- 2. Accelerate classical methods (e.g., prox-gradient, Gauss-Newton).

This talk: a low-overhead method based on accelerated proximal gradient.

$$\widehat{x} \in \operatorname*{argmin}_{x} f(x) + h(x) \longleftarrow \operatorname*{Regularizer}_{x} (\text{non-differentiable})$$

What to do with a GPU solver? Two options:

- 1. Integrate differentiable forward model with MFISNet-like solutions;
- 2. Accelerate classical methods (e.g., prox-gradient, Gauss-Newton).

This talk: a low-overhead method based on accelerated proximal gradient.

$$\widehat{x} \in \operatorname*{argmin}_{x} f(x) + h(x) \longleftarrow \operatorname*{Regularizer}_{x} (\text{non-differentiable})$$

For such problems, the proximal gradient method iterates:

$$\begin{split} \left(\mathbf{ProxGrad} \right) : & \qquad \widehat{x}_{t+1} = \mathbf{prox}_{\tau h} \left(\widehat{x}_t - \eta_t \nabla f(\widehat{x}_t) \right) \\ & \equiv \operatorname*{argmin}_{x} \left\{ \left\langle \nabla f(\widehat{x}_t), x - \widehat{x}_t \right\rangle + \frac{1}{2\eta_t} \left\| x - \widehat{x}_t \right\|^2 + \tau h(x) \right\}. \end{split}$$

$$(\mathtt{ProxGrad}) \qquad \widehat{x}_{t+1} = \mathbf{prox}_{\tau h} \left(\widehat{x}_t - \eta_t \nabla f(\widehat{x}_t) \right)$$

$$\left(\mathtt{ProxGrad} \right) \qquad \widehat{x}_{t+1} = \mathbf{prox}_{\tau h} \left(\widehat{x}_t - \eta_t \nabla f(\widehat{x}_t) \right)$$

Inverse scattering: $f(q) = \|\mathcal{F}_k[q] - d_k\|^2$ and $h(q) = \|q\|_{TV}$ (anisotropic total variation).⁸

⁸Rudin-Osher-Fatemi, 1992

$$\left(\mathtt{ProxGrad} \right) \qquad \widehat{x}_{t+1} = \mathbf{prox}_{\tau h} \left(\widehat{x}_t - \eta_t \nabla f(\widehat{x}_t) \right)$$

Inverse scattering: $f(q) = \|\mathcal{F}_k[q] - d_k\|^2$ and $h(q) = \|q\|_{TV}$ (anisotropic total variation).⁸

• Issues: (i) no analytical form for $\mathbf{prox}_{\|\cdot\|_{\mathrm{TV}}}$, (ii) expensive to eval f(q) and $\nabla f(q)$.

⁸Rudin-Osher-Fatemi, 1992

$$\left(\mathtt{ProxGrad} \right) \qquad \widehat{x}_{t+1} = \mathbf{prox}_{\tau h} \left(\widehat{x}_t - \eta_t \nabla f(\widehat{x}_t) \right)$$

Inverse scattering: $f(q) = \|\mathcal{F}_k[q] - d_k\|^2$ and $h(q) = \|q\|_{TV}$ (anisotropic total variation).⁸

- Issues: (i) no analytical form for $\mathbf{prox}_{\|\cdot\|_{\mathsf{TV}}}$, (ii) expensive to eval f(q) and $\nabla f(q)$.
- Past work (CISOR): numerical approximation to $\nabla f(q)$ via truncated Born series;

⁸Rudin-Osher-Fatemi, 1992

⁹Ma et al., 2018

$$(\mathtt{ProxGrad}) \qquad \widehat{x}_{t+1} = \mathbf{prox}_{\tau h} \left(\widehat{x}_t - \eta_t \nabla f(\widehat{x}_t) \right)$$

Inverse scattering: $f(q) = \|\mathcal{F}_k[q] - d_k\|^2$ and $h(q) = \|q\|_{TV}$ (anisotropic total variation).⁸

- Issues: (i) no analytical form for $\mathbf{prox}_{\|\cdot\|_{\mathrm{TV}}}$, (ii) expensive to eval f(q) and $\nabla f(q)$.
- Past work (CISOR): numerical approximation to $\nabla f(q)$ via truncated Born series;
- Ours: GPU-accelerated gradients, simple splitting method for $\mathbf{prox}_{\tau \| \cdot \|_{\text{TV}}}$. 10

⁸Rudin-Osher-Fatemi, 1992

⁹Ma et al., 2018

¹⁰C. & Willett, 2025

$$\left(\mathtt{ProxGrad} \right) \qquad \widehat{x}_{t+1} = \mathbf{prox}_{\tau h} \left(\widehat{x}_t - \eta_t \nabla f(\widehat{x}_t) \right)$$

Inverse scattering: $f(q) = \|\mathcal{F}_k[q] - d_k\|^2$ and $h(q) = \|q\|_{TV}$ (anisotropic total variation).⁸

- Issues: (i) no analytical form for $\mathbf{prox}_{\|\cdot\|_{\mathsf{TV}}}$, (ii) expensive to eval f(q) and $\nabla f(q)$.
- Past work (CISOR): numerical approximation to $\nabla f(q)$ via truncated Born series;
- ullet Ours: GPU-accelerated gradients, simple splitting method for $\mathbf{prox}_{ au \| \cdot \|_{ au
 u}}.^{10}$

Key benefit: can use 10 - 100x larger stepsizes than CISOR.

⁸Rudin-Osher-Fatemi, 1992

⁹Ma et al., 2018

¹⁰C. & Willett, 2025

Experiments: TV-regularized reconstructions

Dataset: 2D inhomogeneous objects from Institut Fresnel dataset. 11

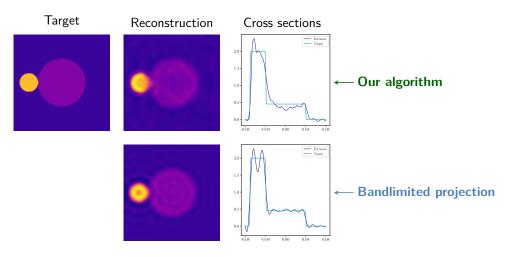
Setup: far-field data at $4 \mathrm{GHz}$; $\widehat{q}_0 = \mathbf{0}$; error tol $\varepsilon = 10^{-3}$.

¹¹Geffrin-Sabouroux-Eyraud, 2005

Experiments: TV-regularized reconstructions

Dataset: 2D inhomogeneous objects from Institut Fresnel dataset. 11

Setup: far-field data at 4GHz; $\hat{q}_0 = 0$; error tol $\varepsilon = 10^{-3}$.

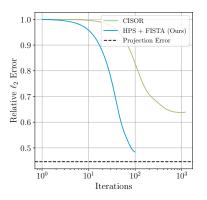


¹¹Geffrin-Sabouroux-Eyraud, 2005

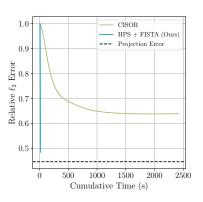
Experiments: TV-regularized reconstructions

Dataset: 2D inhomogeneous objects from Institut Fresnel dataset. 11

Setup: far-field data at 4GHz; $\hat{q}_0 = \mathbf{0}$; error tol $\varepsilon = 10^{-3}$.



(a) Error by iteration count



(b) Error by wall-clock time

¹¹Geffrin-Sabouroux-Eyraud, 2005

Conclusion & future directions

- NN architectures inspired by recursive linearization afford key opportunities:
 - **High-resolution recovery** without test-time PDE solves (<0.1s "inference" time);
 - Can leverage multiscale nature of data;
 - Stabilization of training using homotopy through frequency.
- Ongoing & future work:
 - How to integrate forward model information with NN solutions?
 - How to leverage hardware acceleration in iterative frameworks? (on arXiv soon-ish).

Conclusion & future directions

- NN architectures inspired by recursive linearization afford key opportunities:
 - **High-resolution recovery** without test-time PDE solves (<0.1s "inference" time);
 - Can leverage multiscale nature of data;
 - Stabilization of training using homotopy through frequency.
- Ongoing & future work:
 - How to integrate forward model information with NN solutions?
 - How to leverage hardware acceleration in iterative frameworks? (on arXiv soon-ish).

Thank you!

arXiv:2405.13124