
Communication-efficient distributed eigenspace estimation

Vasilis Charisopoulos

Joint work with Austin Benson & Anil Damle

SIAM Annual Meeting, 2022

Outline

Problem setting

Communication-efficient eigenspace estimation

Robustness to node failures

Problem setting

Motivating example: principal component analysis (PCA).

- Given samples X1, . . . , Xn ∈ Rd, reduce dimension to r ≪ d.

- Solution: top-r eigenspace of empirical covariance matrix:

Σn :=
1

n

n∑
j=1

XjX
T
j = V ΛV T + V⊥Λ⊥V

T
⊥ , V ∈ O(d, r).

Problem setting

Motivating example: principal component analysis (PCA).

- Given samples X1, . . . , Xn ∈ Rd, reduce dimension to r ≪ d.

- Solution: top-r eigenspace of empirical covariance matrix:

Σn :=
1

n

n∑
j=1

XjX
T
j = V ΛV T + V⊥Λ⊥V

T
⊥ , V ∈ O(d, r).

Problem setting

Motivating example: principal component analysis (PCA).

- Given samples X1, . . . , Xn ∈ Rd, reduce dimension to r ≪ d.

- Solution: top-r eigenspace of empirical covariance matrix:

Σn :=
1

n

n∑
j=1

XjX
T
j = V ΛV T + V⊥Λ⊥V

T
⊥ , V ∈ O(d, r).

Problem setting

Motivating example: principal component analysis (PCA).

- Given samples X1, . . . , Xn ∈ Rd, reduce dimension to r ≪ d.

- Solution: top-r eigenspace of empirical covariance matrix:

Σn :=
1

n

n∑
j=1

XjX
T
j = V ΛV T + V⊥Λ⊥V

T
⊥ , V ∈ O(d, r).

This talk: two challenges.

Problem setting

Motivating example: principal component analysis (PCA).

- Given samples X1, . . . , Xn ∈ Rd, reduce dimension to r ≪ d.

- Solution: top-r eigenspace of empirical covariance matrix:

Σn :=
1

n

n∑
j=1

XjX
T
j = V ΛV T + V⊥Λ⊥V

T
⊥ , V ∈ O(d, r).

1. What if data are distributed?

2. What if some machines are compromised?

Problem setting

Motivating example: principal component analysis (PCA).

- Given samples X1, . . . , Xn ∈ Rd, reduce dimension to r ≪ d.

- Solution: top-r eigenspace of empirical covariance matrix:

Σn :=
1

n

n∑
j=1

XjX
T
j = V ΛV T + V⊥Λ⊥V

T
⊥ , V ∈ O(d, r).

1. What if data are distributed?

2. What if some machines are compromised?

Problem setting

General setting and assumptions:

• Unknown symmetric matrix A ∈ Rd×d with decomposition

A = V ΛV T + V⊥Λ⊥V
T
⊥ , V ∈ O(d, r).

• Eigengap: we have δr := λr(A)− λr+1(A) > 0.

• Local errors: machine i observes symmetric A(i) ∈ Rd×d such that∥∥A(i) −A
∥∥
2
≤ δr

8
, i = 1, . . . ,m, (m := number of machines.)

Goals:

1. Communication-efficient algorithms to estimate V .

2. Robustness to corrupted or compromised nodes.

Quality of approximation measured in ℓ2-subspace distance:

dist2(V,U) :=
∥∥(I − V V T)U

∥∥
2
=

∥∥(I − UUT)V
∥∥
2
.

Problem setting

General setting and assumptions:

• Unknown symmetric matrix A ∈ Rd×d with decomposition

A = V ΛV T + V⊥Λ⊥V
T
⊥ , V ∈ O(d, r).

• Eigengap: we have δr := λr(A)− λr+1(A) > 0.

• Local errors: machine i observes symmetric A(i) ∈ Rd×d such that∥∥A(i) −A
∥∥
2
≤ δr

8
, i = 1, . . . ,m, (m := number of machines.)

Goals:

1. Communication-efficient algorithms to estimate V .

2. Robustness to corrupted or compromised nodes.

Quality of approximation measured in ℓ2-subspace distance:

dist2(V,U) :=
∥∥(I − V V T)U

∥∥
2
=

∥∥(I − UUT)V
∥∥
2
.

Problem setting

General setting and assumptions:

• Unknown symmetric matrix A ∈ Rd×d with decomposition

A = V ΛV T + V⊥Λ⊥V
T
⊥ , V ∈ O(d, r).

• Eigengap: we have δr := λr(A)− λr+1(A) > 0.

• Local errors: machine i observes symmetric A(i) ∈ Rd×d such that∥∥A(i) −A
∥∥
2
≤ δr

8
, i = 1, . . . ,m, (m := number of machines.)

Goals:

1. Communication-efficient algorithms to estimate V .

2. Robustness to corrupted or compromised nodes.

Quality of approximation measured in ℓ2-subspace distance:

dist2(V,U) :=
∥∥(I − V V T)U

∥∥
2
=

∥∥(I − UUT)V
∥∥
2
.

Problem setting

General setting and assumptions:

• Unknown symmetric matrix A ∈ Rd×d with decomposition

A = V ΛV T + V⊥Λ⊥V
T
⊥ , V ∈ O(d, r).

• Eigengap: we have δr := λr(A)− λr+1(A) > 0.

• Local errors: machine i observes symmetric A(i) ∈ Rd×d such that∥∥A(i) −A
∥∥
2
≤ δr

8
, i = 1, . . . ,m, (m := number of machines.)

Goals:

1. Communication-efficient algorithms to estimate V .

2. Robustness to corrupted or compromised nodes.

Quality of approximation measured in ℓ2-subspace distance:

dist2(V,U) :=
∥∥(I − V V T)U

∥∥
2
=

∥∥(I − UUT)V
∥∥
2
.

Problem setting

General setting and assumptions:

• Unknown symmetric matrix A ∈ Rd×d with decomposition

A = V ΛV T + V⊥Λ⊥V
T
⊥ , V ∈ O(d, r).

• Eigengap: we have δr := λr(A)− λr+1(A) > 0.

• Local errors: machine i observes symmetric A(i) ∈ Rd×d such that∥∥A(i) −A
∥∥
2
≤ δr

8
, i = 1, . . . ,m, (m := number of machines.)

Goals:

1. Communication-efficient algorithms to estimate V .

2. Robustness to corrupted or compromised nodes.

Quality of approximation measured in ℓ2-subspace distance:

dist2(V,U) :=
∥∥(I − V V T)U

∥∥
2
=

∥∥(I − UUT)V
∥∥
2
.

Outline

Problem setting

Communication-efficient eigenspace estimation

Robustness to node failures

Existing approaches

Note: throughout this section, assume no machines are compromised.

1Garber et al., 2016
2Fan et al., 2019

Existing approaches

Note: throughout this section, assume no machines are compromised.

Option I: “Distribute” an existing iterative algorithm.

• Distributed power method: “map-reduce” eval of

vk+1 ←
1

m

m∑
i=1

A(i)vk.

.

• Shift-and-invert power method1:
- Accelerated version of power method via shifts;

- Reduces to distributed linear system solves.

Drawback: “outer” algorithm sequential → ω(1) communication rounds.

1Garber et al., 2016
2Fan et al., 2019

Existing approaches

Note: throughout this section, assume no machines are compromised.

Option I: “Distribute” an existing iterative algorithm.

• Distributed power method: “map-reduce” eval of

vk+1 ←
1

m

m∑
i=1

A(i)vk.

.

• Shift-and-invert power method1:
- Accelerated version of power method via shifts;

- Reduces to distributed linear system solves.

Drawback: “outer” algorithm sequential → ω(1) communication rounds.

1Garber et al., 2016
2Fan et al., 2019

Existing approaches

Note: throughout this section, assume no machines are compromised.

Option I: “Distribute” an existing iterative algorithm.

• Distributed power method: “map-reduce” eval of

vk+1 ←
1

m

m∑
i=1

A(i)vk.

.

• Shift-and-invert power method1:
- Accelerated version of power method via shifts;

- Reduces to distributed linear system solves.

Drawback: “outer” algorithm sequential → ω(1) communication rounds.

1Garber et al., 2016
2Fan et al., 2019

Existing approaches

Note: throughout this section, assume no machines are compromised.

Option II: Average spectral projectors2 + SVD

1. Machine i computes local principal eigenvectors V (i), sends to HQ;

2. HQ forms and computes principal r-dim. eigenspace of
1
m

∑m
i=1 V

(i)(V (i))T.

Drawback: existing analysis relies on distributional assumptions.

1Garber et al., 2016
2Fan et al., 2019

Existing approaches

Note: throughout this section, assume no machines are compromised.

Option II: Average spectral projectors2 + SVD

1. Machine i computes local principal eigenvectors V (i), sends to HQ;

2. HQ forms and computes principal r-dim. eigenspace of
1
m

∑m
i=1 V

(i)(V (i))T.

Drawback: existing analysis relies on distributional assumptions.

1Garber et al., 2016
2Fan et al., 2019

Existing approaches

Note: throughout this section, assume no machines are compromised.

Option II: Average spectral projectors2 + SVD

1. Machine i computes local principal eigenvectors V (i), sends to HQ;

2. HQ forms and computes principal r-dim. eigenspace of
1
m

∑m
i=1 V

(i)(V (i))T.

Drawback: existing analysis relies on distributional assumptions.

1Garber et al., 2016
2Fan et al., 2019

Proposed method

Algorithm: average eigenvectors of A(i).

Naive implementation:

- Machine i computes and sends V (i) to HQ

- HQ forms 1
m

∑m
i=1 V

(i), computes principal r-dim. eigenspace

Challenge: Local solutions V (i) are defined up to symmetry. Unclear if
naive averaging sufficient to reduce the error.

Proposed method

Algorithm: average eigenvectors of A(i).

Naive implementation:

- Machine i computes and sends V (i) to HQ

- HQ forms 1
m

∑m
i=1 V

(i), computes principal r-dim. eigenspace

Challenge: Local solutions V (i) are defined up to symmetry. Unclear if
naive averaging sufficient to reduce the error.

Averaging with symmetries

Problem (for r = 1): v(i) only defined up to sign.

x1

x2

v

−v

■ aligned with v

■ aligned with −v

Question: can we fix the sign ambiguity?

Averaging with symmetries

Problem (for r = 1): v(i) only defined up to sign.

x1

x2

v

−v

v(1)

■ aligned with v

■ aligned with −v

Algorithm:

ṽ :=
1

m

m∑
i=1

sign(⟨v(i),

v(1)

⟩) · v(i)

Averaging with symmetries

Problem (for r = 1): v(i) only defined up to sign.

x1

x2

v

−v

v(1)

■ aligned with v

■ aligned with −v

Algorithm:

ṽ :=
1

m

m∑
i=1

sign(⟨v(i), v(1)⟩) · v(i)

Averaging with symmetries

Problem (for r = 1): v(i) only defined up to sign.

x1

x2

v

−v

v(1)

■ aligned with v

■ aligned with −v

Algorithm: ṽ :=
1

m

m∑
i=1

sign(⟨v(i), v(1)⟩) · v(i)

Averaging with symmetries

When r > 1, solutions invariant to arbitrary Z ∈ O(r). How should we align?

Solution: align with minimizer of Procrustes problem:

Algorithm:

Zi := argmin
U∈O(r)

∥∥V (1) − V (i)U
∥∥
F
, Ṽi := V (i)Zi

Ṽ :=
1

m

m∑
i=1

Ṽi, Ṽ , ← qr(Ṽ)

• Recovers sign-fixing algorithm when r = 1.

• Closed-form solution for the Procrustes problem.1

• Can solve general aggregation problems under orthogonal symmetries.

Question: how does the error of the “Procrustes-fixed” average scale?

1Higham ’88

Averaging with symmetries

When r > 1, solutions invariant to arbitrary Z ∈ O(r). How should we align?

Solution: align with minimizer of Procrustes problem:

Algorithm:

Zi := argmin
U∈O(r)

∥∥V (1) − V (i)U
∥∥
F
, Ṽi := V (i)Zi

Ṽ :=
1

m

m∑
i=1

Ṽi, Ṽ , ← qr(Ṽ)

• Recovers sign-fixing algorithm when r = 1.

• Closed-form solution for the Procrustes problem.1

• Can solve general aggregation problems under orthogonal symmetries.

Question: how does the error of the “Procrustes-fixed” average scale?

1Higham ’88

Averaging with symmetries

When r > 1, solutions invariant to arbitrary Z ∈ O(r). How should we align?

Solution: align with minimizer of Procrustes problem:

Algorithm:

Zi := argmin
U∈O(r)

∥∥V (1) − V (i)U
∥∥
F
, Ṽi := V (i)Zi

Ṽ :=
1

m

m∑
i=1

Ṽi, Ṽ , ← qr(Ṽ)

• Recovers sign-fixing algorithm when r = 1.

• Closed-form solution for the Procrustes problem.1

• Can solve general aggregation problems under orthogonal symmetries.

Question: how does the error of the “Procrustes-fixed” average scale?

1Higham ’88

Averaging with symmetries

When r > 1, solutions invariant to arbitrary Z ∈ O(r). How should we align?

Solution: align with minimizer of Procrustes problem:

Algorithm:

Zi := argmin
U∈O(r)

∥∥V (1) − V (i)U
∥∥
F
, Ṽi := V (i)Zi

Ṽ :=
1

m

m∑
i=1

Ṽi, Ṽ , ← qr(Ṽ)

• Recovers sign-fixing algorithm when r = 1.

• Closed-form solution for the Procrustes problem.1

• Can solve general aggregation problems under orthogonal symmetries.

Question: how does the error of the “Procrustes-fixed” average scale?

1Higham ’88

Procrustes fixing: approximation error

We provide a deterministic result:

Theorem 1 (C., Benson, Damle ’20)

With δ := λr(A)− λr+1(A) > 0, the output Ṽ of the algorithm satisfies

dist2(Ṽ , V) ≤ 1

m

m∑
i=1

(∥∥A(i) −A
∥∥
2

δ

)2

+
1

δ

∥∥∥∥∥ 1

m

m∑
i=1

A(i) −A

∥∥∥∥∥
2

Error bound: matches centralized algorithm up to quadratic local error.

Communication cost (PCA example):

Centralized: m · dn numbers (send all m · n samples)
Distributed: m · dr numbers (send m matrices d× r)

Typically, r ≪ min(d, n).

Question: can we save on communication without compromising error?

Procrustes fixing: approximation error

We provide a deterministic result:

Theorem 1 (C., Benson, Damle ’20)

With δ := λr(A)− λr+1(A) > 0, the output Ṽ of the algorithm satisfies

dist2(Ṽ , V) ≤ 1

m

m∑
i=1

(∥∥A(i) −A
∥∥
2

δ

)2

+
1

δ

∥∥∥∥∥ 1

m

m∑
i=1

A(i) −A

∥∥∥∥∥
2

Error bound: matches centralized algorithm up to quadratic local error.

Communication cost (PCA example):

Centralized: m · dn numbers (send all m · n samples)
Distributed: m · dr numbers (send m matrices d× r)

Typically, r ≪ min(d, n).

Question: can we save on communication without compromising error?

Procrustes fixing: approximation error

We provide a deterministic result:

Theorem 1 (C., Benson, Damle ’20)

With δ := λr(A)− λr+1(A) > 0, the output Ṽ of the algorithm satisfies

dist2(Ṽ , V) ≤ 1

m

m∑
i=1

(∥∥A(i) −A
∥∥
2

δ

)2

+
1

δ

∥∥∥∥∥ 1

m

m∑
i=1

A(i) −A

∥∥∥∥∥
2

Error bound: matches centralized algorithm up to quadratic local error.

Communication cost (PCA example):

Centralized: m · dn numbers (send all m · n samples)
Distributed: m · dr numbers (send m matrices d× r)

Typically, r ≪ min(d, n).

Question: can we save on communication without compromising error?

Procrustes fixing: approximation error

We provide a deterministic result:

Theorem 1 (C., Benson, Damle ’20)

With δ := λr(A)− λr+1(A) > 0, the output Ṽ of the algorithm satisfies

dist2(Ṽ , V) ≤ 1

m

m∑
i=1

(∥∥A(i) −A
∥∥
2

δ

)2

+
1

δ

∥∥∥∥∥ 1

m

m∑
i=1

A(i) −A

∥∥∥∥∥
2

Error bound: matches centralized algorithm up to quadratic local error.

Communication cost (PCA example):

Centralized: m · dn numbers (send all m · n samples)
Distributed: m · dr numbers (send m matrices d× r)

Typically, r ≪ min(d, n).

Question: can we save on communication without compromising error?

Application: distributed PCA for subgaussian data

Setting: A := ED [XXT] and A(i) = 1
n

∑n
j=1 X

(i)
j (X

(i)
j)T.

Here, X ∼ D satisfy ∥X∥ψ2
≤ σ (Gaussian-like tail), with ∥A∥2 ≍ σ2.

Corollary 1 (C., Benson, Damle ’20)

With δ := λr(A)− λr+1(A), the output Ṽ of the algorithm satisfies

dist2(Ṽ , V) ≲ ∥A∥2
δ

√
sr(A) + logn

mn
+

(
∥A∥2
δ

)2
sr(A) + logm

n
,

where sr(A) ≤ rank(A) is the stable rank of A.

Competitive with central algorithm when n = Ω(m).

Application: distributed PCA for subgaussian data

Setting: A := ED [XXT] and A(i) = 1
n

∑n
j=1 X

(i)
j (X

(i)
j)T.

Here, X ∼ D satisfy ∥X∥ψ2
≤ σ (Gaussian-like tail), with ∥A∥2 ≍ σ2.

Corollary 1 (C., Benson, Damle ’20)

With δ := λr(A)− λr+1(A), the output Ṽ of the algorithm satisfies

dist2(Ṽ , V) ≲ ∥A∥2
δ

√
sr(A) + logn

mn
+

(
∥A∥2
δ

)2
sr(A) + logm

n
,

where sr(A) ≤ rank(A) is the stable rank of A.

Competitive with central algorithm when n = Ω(m).

Application: distributed PCA

Experiment: learn eigenvectors of covariance matrix of distribution D, where:
- D = N (0, A), where A has eigengap δ = 0.2

- sr(A) ≈ 16, d = 300, machines m and samples n are varied.

100 200 300 400 500

10−3

10−2

10−1

Samples per machine n

d
is
t2 2
(Ṽ

,V
1
)

Central (m = 25)

Procrustes (m = 25)

Central (m = 50)

Procrustes (m = 50)

Proof sketch

Theorem: if λr(A)− λr+1(A) ≥ δ > 0, have

dist2(Ṽ , V) ≤ 1

δ2m

m∑
i=1

∥∥A(i) −A
∥∥2

2
+

1

δ

∥∥∥∥ 1

m

m∑
i=1

A(i) −A

∥∥∥∥
2

(1)

High level proof idea:

1. Idealized case: assume it is possible to align with V instead

Z ideal
i ← argmin

U∈O(r)

∥∥V − V (i)U
∥∥
F
, Ṽ ideal

i ← V (i)Z ideal
i

Then, we can show that dist2(Ṽ
ideal, V) follows (1).

2. Path independence:1 for V (1) “near” V , alignment essentially as good:

Zi ← argmin
U∈O(r)

∥∥V (1) − V (i)U
∥∥
F
, Ṽi ← V (i)Zi

⇒
∥∥Ṽi − Ṽ ideal

i

∥∥
2
≲ 1

δ2
∥∥A(i) −A

∥∥2

2
.

1Stewart, 2012.

Proof sketch

Theorem: if λr(A)− λr+1(A) ≥ δ > 0, have

dist2(Ṽ , V) ≤ 1

δ2m

m∑
i=1

∥∥A(i) −A
∥∥2

2
+

1

δ

∥∥∥∥ 1

m

m∑
i=1

A(i) −A

∥∥∥∥
2

(1)

High level proof idea:

1. Idealized case: assume it is possible to align with V instead

Z ideal
i ← argmin

U∈O(r)

∥∥V − V (i)U
∥∥
F
, Ṽ ideal

i ← V (i)Z ideal
i

Then, we can show that dist2(Ṽ
ideal, V) follows (1).

2. Path independence:1 for V (1) “near” V , alignment essentially as good:

Zi ← argmin
U∈O(r)

∥∥V (1) − V (i)U
∥∥
F
, Ṽi ← V (i)Zi

⇒
∥∥Ṽi − Ṽ ideal

i

∥∥
2
≲ 1

δ2
∥∥A(i) −A

∥∥2

2
.

1Stewart, 2012.

Proof sketch

Theorem: if λr(A)− λr+1(A) ≥ δ > 0, have

dist2(Ṽ , V) ≤ 1

δ2m

m∑
i=1

∥∥A(i) −A
∥∥2

2
+

1

δ

∥∥∥∥ 1

m

m∑
i=1

A(i) −A

∥∥∥∥
2

(1)

High level proof idea:

1. Idealized case: assume it is possible to align with V instead

Z ideal
i ← argmin

U∈O(r)

∥∥V − V (i)U
∥∥
F
, Ṽ ideal

i ← V (i)Z ideal
i

Then, we can show that dist2(Ṽ
ideal, V) follows (1).

2. Path independence:1 for V (1) “near” V , alignment essentially as good:

Zi ← argmin
U∈O(r)

∥∥V (1) − V (i)U
∥∥
F
, Ṽi ← V (i)Zi

⇒
∥∥Ṽi − Ṽ ideal

i

∥∥
2
≲ 1

δ2
∥∥A(i) −A

∥∥2

2
.

1Stewart, 2012.

Outline

Problem setting

Communication-efficient eigenspace estimation

Robustness to node failures

Node failures

Corruption model: unknown index set Ibad ⊂ [m] such that:

• |Ibad| ≤ αm, for α ∈ (0, 1/2).

• All nodes i ∈ Ibad return arbitrary, but structurally valid Q(i) ∈ O(d, r).

Sources of corruption:

- Silent / soft errors (e.g., insufficient eigensolver tolerance);

- Outliers / corrupted data (e.g., too few samples in machine in PCA);

- Adversarial responses.

Node failures

Corruption model: unknown index set Ibad ⊂ [m] such that:

• |Ibad| ≤ αm, for α ∈ (0, 1/2).

• All nodes i ∈ Ibad return arbitrary, but structurally valid Q(i) ∈ O(d, r).

Sources of corruption:

- Silent / soft errors (e.g., insufficient eigensolver tolerance);

- Outliers / corrupted data (e.g., too few samples in machine in PCA);

- Adversarial responses.

Node failures

Corruption model: unknown index set Ibad ⊂ [m] such that:

• |Ibad| ≤ αm, for α ∈ (0, 1/2).

• All nodes i ∈ Ibad return arbitrary, but structurally valid Q(i) ∈ O(d, r).

Sources of corruption:

- Silent / soft errors (e.g., insufficient eigensolver tolerance);

- Outliers / corrupted data (e.g., too few samples in machine in PCA);

- Adversarial responses.

A robust algorithm

Strategy: “robustify” two-stage algorithm from noiseless setting.

A robust algorithm

Strategy: “robustify” two-stage algorithm from noiseless setting.

Challenge I: reference solution could be chosen among outliers.

x1

x2

v

−v

v(1)

A robust algorithm

Strategy: “robustify” two-stage algorithm from noiseless setting.

Challenge II: Even with “good” reference, we could average over outliers.

x1

x2

v

−v

v(1)

Outliers

A robust algorithm

Strategy: “robustify” two-stage algorithm from noiseless setting.

Algorithm Robust procrustes fixing

1: Input: responses
{
V̂ (i) | i ∈ [m]

}
, corruption fraction α.

2: Vref := RobustReferenceEstimator(
{
V̂ (i)

}m
i=1

)

3:
{
Ṽ (i)

}m
i=1

:= ProcrustesFixing(
{
V̂ (i)

}m
i=1

, Vref)

4: Ṽ := RobustMeanEstimation(
{
Ṽ (i)

}m
i=1

, α).

Step 1: The robust reference estimator

Idea: adapt standard robust distance estimation technique.1

Algorithm Robust reference estimation

Input: Y (1), . . . , Y (m) ∈ O(d, r).
for i = 1, . . . ,m do

ϵi := min
{
r ≥ 0 |

∣∣{j : dist2(Y
(i), Y (j)) < r

}∣∣ > m
2

}
return Y (i⋆), where i⋆ ∈ argminmi=1 ϵi.

Guarantee: if at least m
2
+ 1 points satisfy dist2(Y

(i), V) ≤ ϵ, then

dist2(Y
(i⋆), V) ≤ 3ϵ.

1Nemirovski & Yudin, ’83.

Step 1: The robust reference estimator

Idea: adapt standard robust distance estimation technique.1

Algorithm Robust reference estimation

Input: Y (1), . . . , Y (m) ∈ O(d, r).
for i = 1, . . . ,m do

ϵi := min
{
r ≥ 0 |

∣∣{j : dist2(Y
(i), Y (j)) < r

}∣∣ > m
2

}
return Y (i⋆), where i⋆ ∈ argminmi=1 ϵi.

Guarantee: if at least m
2
+ 1 points satisfy dist2(Y

(i), V) ≤ ϵ, then

dist2(Y
(i⋆), V) ≤ 3ϵ.

1Nemirovski & Yudin, ’83.

Step 2: Procrustes alignment with robust reference

Idea: argue that when dist2(Vref , V) < ϵ, average over “inliers” has small error.

Algorithm Procrustes fixing

1: Input: responses
{
V̂ (i)

}m
i=1

, robust reference Vref .
2: for i = 1, . . . ,m do
3: V̂

(i)
aligned := V̂ (i) · argminU∈O(r)

∥∥Vref − V̂ (i)U
∥∥
F
.

4: return
{
V̂

(i)
aligned

}m
i=1

.

Guarantee: if dist2(Vref , V) := ϵ < δr(A)
8

, then:∥∥∥∥ 1

|Igood|
∑

i∈Igood

V̂
(i)
aligned−V

∥∥∥∥
2

≲ 1

δ2 |Igood|
∑

i∈Igood

max(∥Ai −A∥22 , ∥A∥
2
2 ϵ

2)

+
1

δ

∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ai −A

∥∥∥∥
2

Step 2: Procrustes alignment with robust reference

Idea: argue that when dist2(Vref , V) < ϵ, average over “inliers” has small error.

Algorithm Procrustes fixing

1: Input: responses
{
V̂ (i)

}m
i=1

, robust reference Vref .
2: for i = 1, . . . ,m do
3: V̂

(i)
aligned := V̂ (i) · argminU∈O(r)

∥∥Vref − V̂ (i)U
∥∥
F
.

4: return
{
V̂

(i)
aligned

}m
i=1

.

Guarantee: if dist2(Vref , V) := ϵ < δr(A)
8

, then:∥∥∥∥ 1

|Igood|
∑

i∈Igood

V̂
(i)
aligned−V

∥∥∥∥
2

≲ 1

δ2 |Igood|
∑

i∈Igood

max(∥Ai −A∥22 , ∥A∥
2
2 ϵ

2)

+
1

δ

∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ai −A

∥∥∥∥
2

Step 3: Robust mean estimation

Idea: use a spectral filtering algorithm to remove outliers.1

Algorithm Filter(S = {Yi}mi=1, λub)

1: Compute empirical mean and covariance:

θS :=
1

|S|
∑
i∈S

Xi, ΣS :=
1

|S|
∑
i∈S

(Xi − θS)(Xi − θS)
T.

2: Compute leading eigenpair (λ, v) of ΣS .
3: if λ < λub then
4: return θS
5: else
6: Compute outlier scores τi := ∥(Xi − θS)

Tv∥2.
7: Sample Z using P (Z = Xi) =

τi∑
j∈S τj

.

8: return Filter(S \ {Z}, λub).

• λub is upper bound on (unknown) ∥ΣIgood∥2;
• Can be made adaptive to ∥ΣIgood∥2 at logarithmic cost.

• Practical implementation: remove point with largest outlier score.

1Kamath et al., 2016

Step 3: Robust mean estimation

Idea: use a spectral filtering algorithm to remove outliers.1

Algorithm Filter(S = {Yi}mi=1, λub)

1: Compute empirical mean and covariance:

θS :=
1

|S|
∑
i∈S

Xi, ΣS :=
1

|S|
∑
i∈S

(Xi − θS)(Xi − θS)
T.

2: Compute leading eigenpair (λ, v) of ΣS .
3: if λ < λub then
4: return θS
5: else
6: Compute outlier scores τi := ∥(Xi − θS)

Tv∥2.
7: Sample Z using P (Z = Xi) =

τi∑
j∈S τj

.

8: return Filter(S \ {Z}, λub).

• λub is upper bound on (unknown) ∥ΣIgood∥2;
• Can be made adaptive to ∥ΣIgood∥2 at logarithmic cost.

• Practical implementation: remove point with largest outlier score.

1Kamath et al., 2016

Experiment

Setup: distributed PCA with ⌊αm⌋ responses replaced by a Vadv ∈ O(d, r).

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

Corruption fraction α

d
is
t 2
(Ṽ

,V
)

Procrustes
Robust

✗ “Baseline” solution almost orthogonal to V as α→ 1/2.

✓ Robust solution: natural breakdown point at α = 1/2.

Closing remarks

Main takeaway. Distributed eigenspace estimation algorithm with:

- Only 1 round of communication;

- Only d× r numbers transmitted per machine;

- Robustness to adversarial, structurally valid node responses.

Potential extensions:

• Distributed PCA with heavy-tailed data?

• What are other interesting corruption models in distributed environments?

• Applications with orthogonal symmetry? (e.g., distributed node embeddings)

Closing remarks

Main takeaway. Distributed eigenspace estimation algorithm with:

- Only 1 round of communication;

- Only d× r numbers transmitted per machine;

- Robustness to adversarial, structurally valid node responses.

Potential extensions:

• Distributed PCA with heavy-tailed data?

• What are other interesting corruption models in distributed environments?

• Applications with orthogonal symmetry? (e.g., distributed node embeddings)

Thanks for listening!

arXiv:2009.02436, arXiv:2206.00127

	Problem setting
	Communication-efficient eigenspace estimation
	Robustness to node failures

