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- Given samples X1,..., X, € R?, reduce dimension to r < d.
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1. What if data are distributed?

2. What if some machines are compromised?
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General setting and assumptions:

Unknown symmetric matrix A € R4*? with decomposition
A=VAV +V A V], Veo(d,r).

Eigengap: we have 6, := \.(4) — A 41(4) > 0.

Local errors: machine i observes symmetric AW ¢ R4 sych that

0

||A(i> - A, < é, i=1,...,m, (m:=number of machines.)

Goals:
1. Communication-efficient algorithms to estimate V.

2. Robustness to corrupted or compromised nodes.

Quality of approximation measured in ¢2-subspace distance:

disto(V,U) := ||(I = VVU|, = || —UUT)V]],.
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Existing approaches

Note: throughout this section, assume no machines are compromised.

Option II: Average spectral projectors® + SVD

1. Machine ¢ computes local principal eigenvectors V@ sends to HQ;

2. HQ forms and computes principal r-dim. eigenspace of
1 Zm V(z) V(l))

Drawback: existing analysis relies on distributional assumptions.

1Garber et al., 2016
2Fan et al., 2019
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Proposed method

Algorithm: average eigenvectors of A,

Naive implementation:

- Machine i computes and sends V) to HQ

- HQ forms # > V@ computes principal r-dim. eigenspace

Challenge: Local solutions V() are defined up to symmetry. Unclear if
naive averaging sufficient to reduce the error.
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When 7 > 1, solutions invariant to arbitrary Z € O(r). How should we align?

Solution: align with minimizer of Procrustes problem:

Algorithm:

Z; = argmin HVU) — V(“UHF7 f/'z = V(i)Zi
UeOo(r)

N 1 < - N -
Vi==-S"V, V,_ v
m; —qr(V)

Recovers sign-fixing algorithm when r» = 1.
Closed-form solution for the Procrustes problem.?

Can solve general aggregation problems under orthogonal symmetries.

Question: how does the error of the “Procrustes-fixed” average scale?

'Higham '88
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We provide a deterministic result:

Theorem 1 (C., Benson, Damle '20)
With 6 := \.(A) — Ar41(A) > 0, the output V of the algorithm satisfies
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Error bound: matches centralized algorithm up to quadratic local error.

Communication cost (PCA example):

Centralized:  m - dn numbers (send all m - n samples)
Distributed: ~ m - dr numbers (send m matrices d X r)

Typically, » < min(d,n).

Question: can we save on communication without compromising error?
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Here, X ~ D satisfy || X||,,, < o (Gaussian-like tail), with ||A]|, < a2

Corollary 1 (C., Benson, Damle '20)
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where sr(A) < rank(A) is the stable rank of A.

Competitive with central algorithm when n = Q(m).



Application: distributed PCA

Experiment: learn eigenvectors of covariance matrix of distribution D, where:
- D=N(0,A), where A has eigengap 6 = 0.2

- sr(A) = 16, d = 300, machines m and samples n are varied.
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Theorem: if A\,.(A) — A\r11(A) > 8 > 0, have

. ~ 1 & i 2 11 &< 4
dista(V, V) < 52m;||A()_A||2+5Hm;14()_‘4

1)

High level proof idea:
1. ldealized case: assume it is possible to align with V' instead

Zldeal . argmln HV V(1)U||F , "}iideal — V(i)Z;deal
UeOo(r)

Then, we can show that disto (V% V) follows (1).
2. Path independence:! for V(! “near” V, alignment essentially as good:

Z; + argmin HV(1> - V(">UHF . Vi vz,
Ueo(r)
A — A,

= 1 - T, S |

1Stewart, 2012.
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A2

A

H.
E.

>
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Corruption model: unknown index set Zyag C [m] such that:
|Zbad| < am, for a € (0,1/2).
All nodes i € Tp.q return arbitrary, but structurally valid Q¥ o(d,r).

Sources of corruption:
- Silent / soft errors (e.g., insufficient eigensolver tolerance);
- Outliers / corrupted data (e.g., too few samples in machine in PCA);

- Adversarial responses.
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Challenge Il: Even with “good” reference, we could average over outliers.
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A robust algorithm

Strategy: “robustify” two-stage algorithm from noiseless setting.

Algorithm Robust procrustes fixing

1: Input: responses {‘7(2') | i € [m]}, corruption fraction c.
2: Vieg 1= RobustReferenceEstimator({\A/(i)}:.11)

3: {‘7“)}7;1 = ProcrustesFixing({‘A/(")}:n:'1 s Vief)

4

Vo= RobustMeanEs‘cimation({f/(i)}:n:1 , Q).




Step 1: The robust reference estimator

Idea: adapt standard robust distance estimation technique.’

Algorithm Robust reference estimation

Input: Y .. Y™ € 0(d,r).
fori=1,...,m do _ _
ei:=min{r >0/ [{j: dist2 (YW, v W) < rH >z}

return Y () where i, € argmin’ | ;.
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Step 1: The robust reference estimator

Idea: adapt standard robust distance estimation technique.’

Algorithm Robust reference estimation

Input: Y .. Y™ € 0(d,r).
fori=1,...,m do _ _
ei:=min{r >0/ [{j: dist2 (YW, v W) < rH >z}

return Y () where i, € argmin’ | ;.

Guarantee: if at least % + 1 points satisfy dist2 (Y, V) < ¢, then

dist2 (Y, V) < 3e.

!Nemirovski & Yudin, '83.



Step 2: Procrustes alignment with robust reference

Idea: argue that when dist2(Vier, V) < €, average over “inliers” has small error.

Algorithm Procrustes fixing

1: Input: responses {‘7“)}:;1, robust reference Vies.
2: foriA?)L...,Ln'do o
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m
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Step 2: Procrustes alignment with robust reference

Idea: argue that when dist2(Vier, V) < €, average over “inliers” has small error.

Algorithm Procrustes fixing

1. Input: responses {V( )} , robust reference V.
2: for i = b 1,...,m do »
3 V;illzgned = V0. sargming ¢ oy ||Vt = VOU||

m

4: return{ I|gned}z 1’

Guarantee: if disto(Vier, V) := € < 5"’;%”, then:

H |Igood ‘

i€, 1€ g00d

1
Z Vioned— H S g > max(||Ai — A2, 4|2 )
5 [ Zgood]

A —A

2




Step 3: Robust mean estimation

Idea: use a spectral filtering algorithm to remove outliers.!

Algorithm Filter(S = {Yi}[",, Auw)

1: Compute empirical mean and covariance:

1 1
QS = EZX“ Ys = EZ(XZ_GS)(XZ_GS)T

i€s i€s
2: Compute leading eigenpair (A, v) of Xg.
3: if A < Aw then
4 return Og
5: else )
6 Compute outlier scores 7; := ||(X; — 0s)"v|".
. AN
7 Sample Z using P(Z = X;) = o5
8 return Filter(S\ {Z}, Aw).

!Kamath et al., 2016



Step 3: Robust mean estimation

Idea: use a spectral filtering algorithm to remove outliers.!

Algorithm Filter(S = {Y;}" |, Auw)

i=1"

1: Compute empirical mean and covariance:

1 1
QS = EZX“ Ys = EZ(XZ_GS)(XZ_GS)T

2jes i’

ies ies

2: Compute leading eigenpair (A, v) of Xg.

3: if A < Aw then

4: return Og

5: else

6: Compute outlier scores 7; := ||(X; — HS)TUHQ.
7: Sample Z using P (Z = X;) = <X

8:

return Filter(S\ {Z}, \w).

Aub is upper bound on (unknown) [|Xz, |

9

Can be made adaptive to ||Xz at logarithmic cost.

gooa ||
Practical implementation: remove point with largest outlier score.

!Kamath et al., 2016



Experiment

Setup: distributed PCA with |am| responses replaced by a Vi, € O(d, 7).

T
0.6 Procrustes |
"7 | | —m— Robust

S o04p .
=
£
S|

0.2 N

O | | | |
0 0.1 0.2 0.3 0.4

Corruption fraction a

X “Baseline” solution almost orthogonal to V as a — 1/2.

v Robust solution: natural breakdown point at v = 1/2.
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Closing remarks

Main takeaway. Distributed eigenspace estimation algorithm with:
- Only 1 round of communication;
- Only d x r numbers transmitted per machine;

- Robustness to adversarial, structurally valid node responses.

Potential extensions:
Distributed PCA with heavy-tailed data?
What are other interesting corruption models in distributed environments?

Applications with orthogonal symmetry? (e.g., distributed node embeddings)



Thanks for listening!
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